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Current situation
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Current situation
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We need methods to design more sustainable processes
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PROCESS

Biomass ‘

co,

New synthesis-design problems arise from: (i) Switch to renewable raw materials (biomass, CO2);
(ii) Discovery of new technologies (catalysts, solvents, etc.);
(i) New design objectives and constraints (sustainability)
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Overall sustainable design problem formulation

The decision-making nature of the process design problem makes it an optimization problem

Problems: L P, NL P, MI L P, MI NLP, S|i mul ati o
Solution strategies: simultaneous, decomposition-based
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A 3-Stage approach to sustainable process design

Decomposing the design problem into stages allows to manage the complexity

Given: set of feedstock & products Given: feasible design (base case)
Find: processing route Find: alternative more sustainable design

Define problem Generate sustainable
intensified alternatives

Generate ] Stage 1 Stage 3 Babi et al. (2015)
superstructure
Synthesis Innovation

Mathematical
formulation

Solve optimization

problem ] Stage 2
Quaglia et al. (2012) Des | g n

Detailed analyses to identify
process bottlenecks

] ) Carvalho et al. (2013)
Given: processing route

Find: feasible design
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A 3-Stage approach to sustainable process design

Decomposing the design problem into stages allows to manage the complexity

Stage 1: Stage 2: Stage 3:
CHARACTERISTIC Synthesis Design Innovation

Number of alternatives Medium Small

Model complexity Low

Data accuracy Lower
Smallest scale Interval Unit operation Phenomena
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A 3-Stage approach to sustainable process design

Decomposing the design problem into stages allows to manage the complexity

Design

Innovation
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A 3-Stage approach to sustainable process design

Focus on Stage 1

Given: set of feedstock & products feasible design (base case)
Find: processing route alternative more sustainable design
Stage 1
Synthesis

Currently there is no commercial tool available for process synthesis

processing route
feasible design
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Synthesis (stage 1) framework

The objective of stage 1 is to obtain the processing route (including feedstock and products)

START
Step 1.1: Problem definition Objective,
- Defineobjective, raw material(s), product(s), location(s) location(s), etc.

| .

Step 1.2: Superstructure generation and data collection ¢ ——————

- Generatesuperstructure(raw materials, products, routes, technologies)
- Collectdata (mass & energy balance data, locatidependent data)

- Check datzonsistency

- Modify generiamodel (if necessary)

Superstructure,
data, model

l '
0
Step 1.3: Solution of the optimization problem c————— A

- Generatenput file, solveoptimization problem in GAMS, generataitput file @

Optimal network

- Perform postoptimality calculations and interpreesults -
and results

No Synthesis
objectives

met?

Yes Define new

— Workflow [ B Tools
scenarios?

=== Data flow _SupeFO
interface

To DESIGN

Source: Bertran, M., Frauzem, R., Zhang, L., Gani, R. (2016). A generic methodology for superstructure optimization of different

processing networks. Computer Aided Chemical Engineering (26th European Symposium on Computer Aided Process KT Consortium | 11
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Synthesis (stage 1) framework

The developed framework is generic, flexible, ontology-based and fast

What to
produce?

Model

Strategic Tactical

Interface

How to
produce it?
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Generic superstructure representation & model

The Processing Step-Interval Network representation is suitable for a wide range of problems

PRODUCTS

P-1

Y

Stage 1 Stage 3

Synthesis Innovation

Stage 2
Design

Processing Step-Interval
Network

(PSIN)

RAW PROCESSING | PROCESSING | PROCESSING
MATERIALS STEP 1 STEP 2 STEP 3
N— g
1-1 \ 2-1 —
) —
RM-1 .
Generic
1-2 i i
SR 4 processing interval
RM-2 <
N———
-3 waste

product

separation separation

mixing reaction

A 4

Source: Quaglia, A., Sarup, B., Sin, G., Gani, R. (2012) Integrated business and engineering framewor

enterprise-wide processing networks, Computers & Chemical Engineering, 38 213-223

IS and design of
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Flexible model formulations
The location-dependent model allows the formulation of various relevant scenarios
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Flexible model formulations

A subset of top-ranked solutions can be used to find the most suitable for a given case

< Fnvironmental impact

I - conomic profit m——>
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Ontology-based data management through databases

Specific databases are built on a common data structure that fits the problem requirements

Basic

Component

Reaction

Location

Material Process
Name Jep name
Feedstock Corn stover Sep Conversion
Location
L Mexico Interval name
Product Interval Fermentation
Availability
Name N 1.84e07 t/y _
Mexico Utility ) Connection
Price
L Country code 130 Ut
MX

Data Biorefinery Database

Components 71

Utilities 4

Processing steps 21

Processing intervals 102

Feedstocks 11

Products 9

Reactions 63

Locations 10

Source: Bertran, M., Frauzem, R., Sanchez-Arcilla, A., Zhang, L., Woodley, J.M., Gani, R. (submitted). A generic methodology for
processing route synthesis and design based on superstructure optimization. Computers and Chemical Engineering (Special Issue

ESCAPE26).
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Fast exection through a user interface

Super-0O: An interface for formulating and solving synthesis problems using superstructure optimization

RAW PROCESSING | PROCESSING | PROCESSING
MATERIALS STEP 1 STEP 2 STEP 3 PRODUCTS

e Kl e el
__, | Superstructure | | [
Problem of alternatives 2 |y e s {2 )

RM-2 o
e
\____)

Basic Material Process
Component i Feedstock i Sep
Reaction | Product Interval Su p e FO
Location ‘ Utility p— Qonnection
|
Database Model
2 §Fm
M +
= Fu'
‘Wk
LEGEND:
O Mixing & Waste sep. — Process stream
@® Flow division N v
O Reaction + Utility stream
Solut Solution
olution <+—
strategy [gams
Source: Bertran, M., Frauzem, R., Sanchez-Arcilla, A., Zhang, L., Woodley, J.M., Gani, R. (submitted). A generic methodology for )
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Fast execution through a user interface

Super-0O: An interface for formulating and solving synthesis problems using superstructure optimization

SuperO
@ (Superstructure & dat@«— Sl
v DATABASES
Structured problem data A
1 N . GAMS
N |
Consistency checks \\\ | BE
7 GAMS input file >
: . : & —E GAMS optimizatior)
Graphical representation e _ (CPLEX)
1 e GAMS output fileje
// //
Linearization of capital cost /,/ _____ 1 Generic model file
- 1
. i 1/_ ————— v
Edits on the model =7~ Modified model filej-
v o
Optimal solution )‘

v - = = Automated

(Optimal network & results)

- — — Manual

Source: Bertran, M., Frauzem, R., Zhang, L., Gani, R. (2016). A generic methodology for superstructure optimization of different
processing networks. Computer Aided Chemical Engineering (26th European Symposium on Computer Aided Process KT Consortium | 18
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Synthesis (stage 1) framework

The developed framework is generic, flexible, ontology-based and fast

Model

Formulation that fits various
problem types

Superstructure of alternatives

Easy to adapt to different

Task-based process model ‘}Q applications

%
: . % Library of models and functions
Unique representation
What to : : How to
----------- r | Tactical :
produce? Strategic actica produce it?

User interface Templates for data collection

g
S

Systematic methods & tools Databases

Enables data reuse from

previously-solved problems Data structure

Interface
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What are the possible problems and application areas
for which the synthesis framework can be used?
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Application example

Ethanol from biomass

 Which biomass-derived feedstocks can be used?
e Where are they available?

 What are the different routes to convert the feedstocks

to the product?
 What are the processing technologies available?
* Is the solution location-dependent?

* Which set of feedstock-topology-location is optimal?
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Application examples

Superstructure of alternatives for the biomass-to-ethanol example

PURCHASE BIOMASS

LOCATION RAWMATERAL = WATERADDITION = PRETREATMENT HYDROLYS'S FERVIENTATION REVOVAL SEPARATION PURFACATION PRODUCT SALELOCATION
BRAZIL
BRAZIL
| —
P2 L
) RECTZEO
T
CANADA _
| CANADA
_43: —_— P-
) HYD- RECTSL
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GLYCER —
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CONAC ETOH CNTR BEERDIST - G [
— ETHYL \ /
MEXCO | N
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2
HYD- EMIMBF4
; DILAC
THAILAND |- A
j—y THAILAND
BMIMCL
UsA

Source: Bertran, M., Frauzem, R., Sanchez-Arcilla, A., Zhang, L., Woodley, J.M., Gani, R. (submitted). A generic methodology for
processing route synthesis and design based on superstructure optimization. Computers and Chemical Engineering (Special Issue KT Consortium | 22
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Application examples

Ethanol from biomass: Fixed location vs location-based (constrained to a single location)

Location RM WADD PRE HYD FERM BIOR SEP1 SEP2 PROD Profit

BR SCB WADD-ARP ARP NREL FERM CENTR BEER BMIM ETOH 11.38

CA WS - STEX NREL FERM CENTR BEER BMIM ETOH -

CN SCB WADD-DA DILAC NREL FERM CENTR BEER BMIM ETOH 37.86

IN SCB WADD-DA DA NREL FERM CENTR BEER BMIM ETOH -

MX WS - STEX NREL FERM CENTR BEER BMIM ETOH -4.46

TH CR - STEX DA FERM CENTR BEER BMIM ETOH -

us HWC - STEX CONCA FERM CENTR BEER BMIM ETOH 47.63

T Lowest profit Highest profit
even B i

RM WADD PRE HYD FERM BIOR SEP1 SEP2 PROD Profit Location

CR - STEX DA FERM CENTR BEER BMIM ETOH 116.03 TH

Source: Bertran, M., Frauzem, R., Sanchez-Arcilla, A., Zhang, L., Woodley, J.M., Gani, R. (submitted). A generic methodology for
processing route synthesis and design based on superstructure optimization. Computers and Chemical Engineering (Special Issue

ESCAPE26).
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Application examples

Ethanol from biomass: The output of stage 1 is the processing route (flowsheet)
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Source: Bertran, M., Frauzem, R., Sanchez-Arcilla, A., Zhang, L., Woodley, J.M., Gani, R. (submitted). A generic methodology for
processing route synthesis and design based on superstructure optimization. Computers and Chemical Engineering (Special Issue KT Consortium | 24
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Application example

Value-added products from sugarcane molasses

Molasses are a byproduct of sugar production.

* Which are the potential products?

 What are the alternatives routes and technologies to produce them

from the feedstock?

* Which is the optimal product and process topology for Mexico?

KT Consortium | 25



Application example

Value-added products from sugarcane molasses

| I 1] v \% VI VI VIl IX X XI XIl X
Rotat E ti Neutrali : :
o R ?“?etr)ry vag)r?ra " eaLtlior% 'Z 44 Drying | L-Lysine

Sugarcane Mixing | | | lon | =1
molasses and filter exchange

p N
[ Rotatory | | | Neutraliz Neutraliz ‘ Crystalliz | | . | _ .
MG filter { ation ation | ation r> Drying - Citric acid

e N

[ [ Rotatory ‘ Neutraliz Evaporati ‘ . || . .
\ F1 [ =] { [=¢] %» filter ‘ ation %{ on ‘ Drying Lactic acid
{ y

Cost of chemicals

Product sales and utilities Feedstock cost
max Z = E (P3i,kk 'Ffzf{ - E (szk 'Ri,kk,ss) - E (Pli,kk Floﬁ;)
i,kk i,kk i,kk

19 M$/a 30 M%$/a 5 M$/a 6 M$/a
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Overview of problems & applications

Synthesis problems in various fields have been solved using Super-O

Problem size

NP

Case (problem type)

NF
Network benchmark 5
problem (d)
Wastewater network (d) 2
Sugarcane molasses 1
biorefinery (b)
DMC from CO, (a) 1
Biodiesel biorefinery (d) 3
MeOH, DME, DMC from 1
CO;, (b)
Bioethanol biorefinery (c) 6

4

NI

12

24

32

16

46

13

35

NC

15

12

11

27

16

34

NU

NR

37

26

91

14

47

NL

Model size
NEQ NV (NDV)
3,476 3,235 (120)

112,147 108,742 (74)
76,360 73,141 (52)
8,546 7,985 (26)
1,210,227 1,193,507 (182)

51,373 49,573 (60)

175,383 162,798 (1,330)

@ (b) (©) (d)

NF: number feedstocks, NP: number products, NI: number intervals, NC: number components, NU: number
utilities, NR: number reactions, NL: number locations, NEQ: number equations, NV: number variables, NDV:

number discrete variables

Reference

Quaglia et al. (2012)

Handani et al. (2014)

Bertran et al. (2015a)

Frauzem et al. (2015)

Bertran et al. (2015b)

Bertran et al.
(submitted)

()
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Overview of problems & applications

The framework is applicable to a number of problem types across various application areas

Chemical
processes

Biorefineries

Oil & Gas

Pharma
processes

CoO,
utilization

Wastewater
management

Process Supply Feed/product Plant Equipment  Process
synthesis chain selection allocation selection retrofit Blending

ks Ky s ks
RO A kK,

x* B+
-
> F
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An international collaboration network

How to convert biomass feedstock into valuable chemicals, energy and fuels?

Tsinghua University

2 AR

ﬁ. ~ ‘} o
AUBURN g
UNIVERSITY g ! o t

KAIST

r l’heUniyersitg of
4 | Nottingham

" |UNITED KINGDOM - CHINA - MALAYSI
L}

NOMA

UNIVERSIDADE
FEDERAL DO
RIO DE JANEIRO

UFR)

Chulalongkorn
University

POLITECNICO
|__MILANO1863 |
11 institutions, 9 countries

' ' 4th Workshop on ProBioRefine
PI’O BI O Refl ﬂ e Mexico, December 14-15 2017

Source: www.probiorefine.com
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Conclusions

* Aframework for biorefinery process synthesis using

superstructure optimization has been developed.
 The framework is generic, flexible, ontology-based and fast to execute.

 The associated methods and tools are: superstructure representation,

generic process model, data management system.

 The generic model allows different formulations covering a wide range of

problems and applications and providing location-dependent solutions.

* Multiple solutions can be obtained for a given problem & scenario,

ordered by value of the objective function.

o Asoftware implementation of the framework is available (Super-O).
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