Key numbers of 2015

The vision of DTU Chemical Engineering is to be acknowledged as a world leading chemical and biochemical engineering department. Below we have listed a selection of our key results of 2015* to show how they support our strategic objectives.

<table>
<thead>
<tr>
<th>STRATEGIC AREA</th>
<th>VISION</th>
<th>RESULTS IN 2015</th>
</tr>
</thead>
</table>
| RESEARCH | Supports the development of sustainable solutions in the fields of chemistry, biotechnology, food, pharma and energy through research and scientific advice. | 180 SCIENTIFIC ARTICLES IN WoS-INDEXED JOURNALS
7 CONTRIBUTIONS TO BOOKS
23 PhD THESSES |
| INNOVATION | An attractive partner for university departments and research-based industry. | 10 PATENTS AND PATENT IDEAS
8 INDUSTRIAL PHDS |
| EDUCATION | Helps to retain, develop and attract knowledge-based national working places, including companies with affiliates abroad. | 260 STUDENTS (STÅ**)
19 COMPLETED BENG PROJECTS
78 COMPLETED MSC PROJECTS |
| ORGANIZATION | Attractive place to work for ambitious and technology-passionate staff members. | 31 ADMINISTRATIVE EMPLOYEES
98 PhD STUDENTS
86 SCIENTIFIC EMPLOYEES
24 TECHNICAL EMPLOYEES
4 TRAINEES
243 EMPLOYEES IN TOTAL |

<table>
<thead>
<tr>
<th>STAFF DISTRIBUTED BY AGE:</th>
<th>FOREIGN SCIENTIFIC STAFF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>38% 20-29</td>
<td>4% AFRICA</td>
</tr>
<tr>
<td>28% 30-39</td>
<td>24% ASIA</td>
</tr>
<tr>
<td>15% 40-49</td>
<td>61% EUROPE</td>
</tr>
<tr>
<td>10% 50-59</td>
<td>6% MIDDLE EAST</td>
</tr>
<tr>
<td>9% 60-69</td>
<td>1% NORTH AMERICA</td>
</tr>
<tr>
<td></td>
<td>4% SOUTH AMERICA</td>
</tr>
</tbody>
</table>

* 1 JANUARY - 1 DECEMBER 2015
** ONE STÅ IS THE EQUIVALENT OF ONE STUDENT STUDYING FULL TIME FOR A YEAR
In all, 91 students from universities around the world visited Lyngby Campus for three and four-week summer university courses where they were challenged with designing and operating pilot plants. The majority came from the US, however, students also travelled from Singapore, Brazil, China, Spain, Portugal, and Romania.
Almost 150 years ago, technical chemistry was introduced at DTU, and in 1954 Professor Søltoft was employed as Head of the Department of Technical Chemistry. Eight years later, this department was separated into the Department of Chemical Industry and the Department of Chemical Engineering, which then 25 years later were successfully unified again under Professor Fredenslund – an important anniversary that we celebrated this year.

The important developments following the merger were moreover due to the work of Professor Kümmel and Professor Østergaard who headed our department before I got the honour of taking over in 2000. The early 00’s were an exciting time, as DTU established itself as a self-owning university. During these years, we had a strong focus on developing the field of biochemical engineering, and in 2008 our activities in this field had grown to a size that led us to change our name to Department of Chemical and Biochemical Engineering.

Since then, our department has grown even further. We have included activities from the previous Risø National Laboratory for Sustainable Energy, and we have developed a new and efficient organization consisting of six research centres in total.
25 years since the reunification - What’s next?
In 2015, we have further strengthened our organization. We have employed several new faculty members who are bringing extensive knowledge to our department and to our 260 current students. We have also set up a new Research & Innovation Committee headed by Professor Ole Hassager, and we have further developed our research by establishing a new research centre called PILOT PLANT. I would like to welcome Technical Manager Lars Kiørboe as Head of the new centre. Furthermore, I would like to welcome Associate Professor Anne Ladegaard Skov as the new Head of our Danish Polymer Centre (DPC).

During the year, we were also proud to host important conferences with a large number of delegates such as the joint PSE2015/ESCAPE25 conference, the Thermodynamics 2015 and the Nordic Flame Days 2015. In the coming year, we look forward to many more enlightening conferences, among others the PetroPhase 2016 conference in June. We also look forward to leading the establishment of new curriculums for the two Bachelor of Engineering programmes ‘Chemical and Biochemical Engineering’ and ‘Chemistry and International Business’. Finally, we look forward to further developing our great construction project that will provide our students and employees with an improved research environment.

Thank you
Today, we feel more than ready to meet the many different challenges of education, innovation and research in a highly competitive environment. This is thanks to our many dedicated employees to whom I would like to express my deepest gratitude for their hard work. I would also like to thank our many national and international partners in industry and academia for making our journey possible.

This annual report offers a glimpse into this year’s many exciting activities which I hope you will enjoy reading about in the following pages.

Yours sincerely,

Kim Dam-Johansen
Professor, Head of Department
The ceremonial red ribbon is cut by the Danish Minister for Energy, Utilities and Climate, Lars Christian Lilleholt together with CEO of UniBio A/S Henrik Busch-Larsen and Professor John Villadsen, which marks the opening of a new fermentation facility in DTU Chemical Engineering’s pilot plant. The fermentation facility is based on technology which uses natural gas in the production of protein for animal feed.
HIGHLIGHTS 2015

JANUARY

13 January
BIOPRO COLLABORATION RECEIVES 128 MILLION
Thanks to investments from several parties – including Region Zeal- land, Innovation Fund Denmark, companies and universities – the BIOPRO collaboration will continue in the period 2015-2019. The objective of BIOPRO is to boost Denmark's strong position in the field of biotechnological production.

29 January
OLE HASSAGER – 40 YEARS IN SERVICE OF THE STATE
Professor Ole Hassager’s impressive 40 years in service of the state was celebrated on 2 February where he gave an interesting look back at his long career including his time at the University of Wisconsin – Madison where he wrote his PhD thesis.

FEBRUARY

18-23 February
VISIT TO GHANA
In the beginning of this year, Head of BioEng Professor Anne S. Meyer, Project Leader Anders Thygesen, Researcher Marcel Tutor Ale and PhD student Nanna Rhein-Knudsen travelled to Ghana in connection with their newly started SeaBioGha project funded mainly by Danida. The main objectives of the trip was to visit potential coastline areas for offshore seaweed farming, collect seaweed samples and to meet the Ghanaian partners.

MARCH

06 March
DTU OPEN HOUSE EVENT
A record number of 2600 young people from all over Denmark visited the DTU Open House. That is 800 more than last year and a clear indication of the increasing interest in engineering educations. To inform and engage the potential students were current students from our BEng programmes Chemical and Biochemical Engineering and Chemistry and Business Economy.

APRIL

26-30 April
DPC WINS HOSTING OF ISPO 2017
Danish Polymer Centre (DPC) won the hosting of the 2017 edition of the international workshop in silicone-based polymers, ISPO. At the same occasion, Frederikke Bahrt Madsen won the award for Best Presentation by a Young Lecturer 2015.

28 April
HEMPEL DTU PRIZE AWARDED TO ‘YOUNG SCIENTISTS’
Professor and Head of Department, Kim Dam-Johansen awarded the Hempel-DTU prize to the two winners, Odense Tekniske Gymnasium and Borupgaard Gymnasium for their extraordinary effort in engaging students in science and technical subjects. The winners were handed the prize of DKK 100.000 during the Unge Forskere (Young Scientists) competition in Copenhagen.

KICK-OFF OF BLUEINNOSHIP PROJECTS
DTU Chemical Engineering participates in the large multidisciplinary project Blue INNoShip, and this year we kicked off three related projects: The ‘Multi Fuel Burner’ project aimed at developing a multi fuel burner which can be used in marine applications fulfilling new environmental requirements for NOx, Sox, and particles; the ‘Selective Catalytic Reduction of NOx on Ships’ project which will to provide the tools, mathematical models, and knowledge needed for industrial partners to supply optimal and competitive SCR technology solutions for ships; and the ‘Slow Steaming Anti Fouling Paint’ project which aims to develop and validate new antifouling paint for slow-steaming container vessels. Collaborators in these projects are Alfa Laval Aalborg, Clean Combustion, Haldor Topsøe, Maersk Maritime Technology, and Hempel.
01 May
NEW RESEARCH & INNOVATION COMMITTEE
The Research Committee and the Innovation Committee have been unified into one. The new Research & Innovation Committee, chaired by Professor Ole Hassager, is expected to contribute significantly to the development of activities within research, PhD education and innovation across our research centres.

01-03 May
NEW PROJECT TO INCREASE OUR INDEPENDENCE ON OIL
The importance of formaldehyde is expected to increase in the transition to an oil-free society. A wide range of products such as plastics, synthetic fibers, glue and industrial chemicals can be created from formaldehyde. The project called ‘Next Generation Methanol to Formaldehyde Selective Oxidation Catalysts’ is funded by the Danish Council for Independent Research. It aims to develop effective catalysts with slow deactivation for the manufacture of formaldehyde by the reaction of methanol and air.

NEW FACULTY MEMBERS
This year, we have added several new members to our faculty: Associate Professor Hariklia N. Gavala, who is doing research in biological processing of biomass for the sustainable production of biofuels and chemicals with emphasis on fermentation technology with mixed microbial consortia and development of innovative concepts for cost-efficient bioconversions. Assistant Professor Xiaodong Liang who researches the development of the advanced thermodynamic models and numerical algorithms for homogeneous and inhomogeneous complex fluids. Assistant Professor Hao Wu who researches industrial high temperature processes with focuses on experimental and modelling of biomass and waste thermochemical processes. Associate Professor Anna Eliasson Lantz, whose research aims at finding strategies for optimization of fermentation processes and equipment with special focus on challenges related to scaling and implementation of process-analytical technology (PAT) and Associate Professor Loannis V. Skiadas whose research focuses on the development (from laboratory to pilot plant scale) of new biorefining concepts for the sustainable production of fuels and chemicals from biomasses. Furthermore, we have welcomed Special Consultant Ivan Hundebøl to our faculty, who will be co-supervising PhD students.

30 May - 04 June
PSE2015/ESCAPE25 CONFERENCE 2015
546 abstracts, 41 keynote presentations, 191 oral presentations, 312 poster presentations and 600 participants from more than 50 countries. The numbers were high at the PSE2015/ESCAPE25 conference in Copenhagen which was hosted by the CAPEC-PROCESS research centre.

10 June
SEYED SOHEIL MANSOURI WINS TWO AWARDS AT ADCHEM 2015
After participating in the ADCHEM 2015 conference in June, PhD student Seyed Soheil Mansouri was able to travel home from Canada with no less than two awards; the Best Oral Presentation Award and the Travel Fellowship Award.

14 June
DR. BJØRN MARIBO-MOGENSEN AWARDED EFCE AWARD
The 'EFCE Excellence Award in Thermodynamics and Transport Properties 2015’ was given to Dr Bjorn Maribo-Mogensen in recognition of his excellent PhD work on the modelling of electrolyte solutions. The award was presented in Athens at the European Symposium on Applied Thermodynamics (ESAT).

26 June
GREEN CHALLENGE
Students from all over the world were gathered to compete against each other in this year’s Green Challenge. 138 abstracts were presented to the judges - 11 of which came from DTU Chemical Engineering. 5 of these contributions came from students of our MSc-programme at Sino-Danish Centre in China who were visiting Denmark to attend courses and visit the production sites of Novozymes, Haldor Topsøe and Hempel.
HIGHLIGHTS 2015

JULY

01 July
NEW RESEARCH CENTRE ESTABLISHED
A new research centre called PILOT PLANT - Center for Experimental Process and Equipment Design has been established. The new centre, headed by Lars G. Kiærboe, will conduct its research and teaching in the pilot plant of DTU Chemical and Biochemical Engineering.

1 July
KICK-OFF OF SYNFERON PROJECT
SYNFERON aims to make biofuel conversion more efficient by developing a new technological platform that will advance the existing knowledge of the syngas fermentation and downstream processing of the liquids products. The project is interdisciplinary with a lot of expertise from both the academic and the industrial world. Furthermore, four of our research centres cooperates in the project, these are AT-CERE, CAPEC-PROCESS, BIOENG, PILOT PLANT. The SYNFERON project is mainly funded by the Innovation Fund Denmark.

AUGUST

15-22 August
BIOPRO WORLD TALENT CAMPUS
25 selected science talents gathered from all over the world for the third BIOPRO World Talent Campus case competition to solve some real-life challenges of Novo Nordisk, Novozymes, CP Kelco, DONG Energy and Chr. Hansen.

20 August
NOVOZYMES NAMES AWARD AFTER JOHN VILLADSEN
John Villadsen, an important figure and Professor Emeritus at DTU Chemical Engineering received the very first ‘Novozymes Award for Excellence in Biochemical and Chemical Engineering.’ The award will be given annually to individuals in his honour.

SEPTEMBER

15-18 September
THERMODYNAMICS 2015
For the fourth time since the early 1960s, the Thermodynamics conference took place outside the UK and for the first time Denmark was host. Organized by Professor Georgios Kontogeorgis and his team from AT-CERE, the Thermodynamics 2015 conference was well received by its around 160 participants.

25 September
CAPEC-PROCESS ANNUAL LECTURE 2015
Professor Greg Stephanopoulos from the Chemical Engineering Department of MIT gave an insightful lecture on “The Vision of a Sustainable Bioeconomy in an Era of 50-dollar Oil” at the second CAPEC-PROCESS Annual Lecture 2015.

OCTOBER

06 October
SOCIETY OF PETROLEUM ENGINEERS (SPE) AT LYNGBY CAMPUS
DTU hosted the meeting of the Copenhagen section of the Society of Petroleum Engineers (SPE) which was organized by the Center for Energy Resources Engineering (CERE) in collaboration with the new Centre for Oil and Gas. 140 delegates from academia and industry participated.

06-07 October
NORDIC FLAME DAYS
Covering subjects such as power plant combustion, diesel engine combustion, ash formation and gasification, the 2015 edition of the Nordic Flame Days provided a solid insight into the different and significant behaviour of flames for the 120 researchers and industrial partners who participated in the conference.
30 October
FREDERIKKE BAHRT MADSEN RECEIVES THE DTU YOUNG RESEARCHER AWARD
The ‘DTU Young Researcher Award’ for researchers who have made an extraordinary effort and who have shown great potential for further development was given to Frederikke Bahrt Madsen for her PhD thesis. Furthermore, earlier this year, she also received a postdoc grant of DKK 3 million from the Danish Council for Independent Research for a project which aims to improve the current silicone rubbers.

NOVEMBER

01 November
ANNE LADEGAARD SKOV IS THE NEW HEAD OF DPC
Professor Ole Hassager has passed on the title ‘Head of the Danish Polymer Centre (DPC)’ to Associate Professor, Anne Ladegaard Skov. Anne Ladegaard Skov is specialized in elastomers with main emphasis on silicone elastomers utilized as dielectric elastomers. She has a broad knowledge on mechanical, electrical and electromechanical characterization of elastomers.

19-20 November
MODLIFE PROJECT KICK-OFF
The ModLife project aims to develop Advanced Model-Based Optimization, Monitoring and Control as Enabling Technologies for bioprocess-product development and innovation tailored for the needs in life science industries. The ModLife European Training Network will address excellence in research and training of next generation biochemical and process engineers in life sciences industries.

8-13 November
AIChE ANNUAL MEETING IN SALT LAKE CITY
Six PhD students, two postdocs, two faculty members and twelve MSc students from DTU Chemical Engineering travelled across the Atlantic to discuss and share their knowledge at the AIChE Annual Meeting 2015 in Salt Lake City in Utah. One of the PhD students, Stefano Cignitti had his paper upgraded to the plenary session of the CAST division.

DECEMBER

01 December
NEW PROJECT ON INCREASED UTILIZATION OF BIOMASS
The cell walls of plants are reinforced with lignin which constitutes 10-30% of plant biomass. The conversion of lignin is a huge challenge in biorefining of plant material. The project ‘Laccase structure-function relations for enzymatic lignin modification’ aims to provide a better understanding of the details of the laccase protein structure as a key to the development of efficient enzymes which can be used in practice to gently and efficiently modify lignin. The project is funded by the Danish Council for Independent Research.

2 December
NEW BOOK ON BIO-ENGINEERING
A new book entitled ‘Fundamental Bio-Engineering’ explains how the Biosciences and Chemical Engineering work together to create new products and procedures in Biotechnology. Published by Wiley, the book is edited by the prominent Professor John Villadsen who has moreover contributed with 8 out of the in all 16 chapters. Furthermore, Associate Professor Jakob Huusom has contributed with a chapter, making the representation from DTU Chemical Engineering quite visible.

EIGHT DEPARTMENTAL SEMINARS
During this year, we have held no less than eight departmental seminars with invited speakers from industry and academia around the world. Organized by Associate Professor Gürkan Sin, the seminars were a success thanks to the interesting lectures given by Hallvard FjøsneSvendsen from NTNU, Michael Steffensen from COWI, Jinghai Li from CAS, Giancarlo Galli from University of Pisa, Ronald G. Larson from University of Michigan, Jan-Dierk Grunwaldt from Karlsruher Institut für Technologie, Gregory Stephanopoulos from MIT and Yujun Wang from Tsinghua University.
CHEMICAL ENGINEERING IN BRIEF

Photo: Employees celebrate 25 years as DTU Chemical Engineering
25th, 50th, 100th. We have definitely had our share of anniversaries, depending on which year you count from. This year, we celebrated the 25th anniversary of the important merger of the two departments Chemical Industry and Chemical Engineering in 1990.
The close cooperation with DTU Chemical Engineering has ensured significant results in a lot of industries. Long-term focus on development and innovation is necessary to meet the ever-changing opportunities, rules, legislation, and profitability demands that all industries are faced with. DTU Chemical Engineering ensures a high level of education, motivated candidates, and industrial cooperation in important research projects that will lead to technologies of the future.

Scientific research at university level is a prerequisite for the development of Lundbeck’s chemical activities in Denmark. We have had a beneficial partnership with DTU Chemical Engineering for several years, collaborating on PhD projects and recruiting several of the department’s candidates. Furthermore, it has been a great advantage to be able to draw on the knowledge of DTU Chemical Engineering’s scientific staff as advisors/consultants.

Working closely with the best research groups within the fields of our core competences is of major importance to Haldor Topsoe A/S. Our cooperation with DTU Chemical Engineering enables us to resolve research challenges beyond our competences and resources and is an important source of inspiration and knowledge for employees at Haldor Topsoe, benefitting their own and the company’s development.

The close cooperation with DTU Chemical Engineering has ensured significant results in a lot of industries. Long-term focus on development and innovation is necessary to meet the ever-changing opportunities, rules, legislation, and profitability demands that all industries are faced with. DTU Chemical Engineering ensures a high level of education, motivated candidates, and industrial cooperation in important research projects that will lead to technologies of the future.
RESEARCH CENTRES

▲ CAPEC-PROCESS

The research activities of the CAPEC-PROCESS research centre are performed in close collaboration with the chemical, petrochemical, pharmaceutical, and biochemical industries and are divided into two areas:

- Process Systems Engineering (PSE), where the focus is on developing model-based tools and methods for solving complex problems in (bio)chemical products and processes
- Process Intensification and Integration (PII), where we engage in research activities comprising intensified/integrated processes that contribute to more resource-efficient processes and production concepts.

www.capec-process.kt.dtu.dk
Contact: Professor Krist Gernaey
Phone: +45 4525 2970

▲ PILOT PLANT

The research activities of PILOT PLANT are based on the path from laboratory scale to pilot scale experimental processes with particular focus on industrial practice. This includes unit operations, reaction engineering, process control, process and plant design, instrumentation, automation, and industrial measuring technology, but also topics such as scale up and scale down as well as batch versus continuous processes. Special focus areas are fermentation - mainly from a process point-of-view, but also innovative technology and particle technology.

www.kt.dtu.dk/research
Contact: Lars G. Kiørboe
Phone: +45 4525 2857

▲ AT CERE

AT CERE is a dynamic research group with an excellent track record and international reputation in the areas of applied thermodynamics, transport processes, and mathematical modelling. The centre is committed to performing high-quality experimental and theoretical research with international impact. There is extensive collaboration, first of all within CERE and DTU Chemical Engineering, but also with universities and industries around the world. It shares industry consortium with CERE, which in 2015 included 31 companies, of which 23 were international.

www.cere.dtu.dk
Contact: Professor Georgios Kontogeorgis
Phone: +45 4525 2859

▲ BIOENG

The mission of BioEng is to conduct research that provides new knowledge, new enzymes, and new innovative process strategies for resource utilization, industrial bioconversion processes, and new products supporting a sustainable development. The centre is also dedicated to hatching top-qualified MSc and PhD candidates through research-based teaching and structured supervision.

www.kt.dtu.dk/research
Contact: Professor Anne S. Meyer
Phone: +45 4525 2800

▲ CHEC

The research activities of CHEC cover industrial high-temperature processes, emissions control, catalysis and catalytic processes, particle technology, coatings, and production. Furthermore, the main disciplinary research is within reaction engineering and transport processes and cover theoretical modelling based on experiments carried out from microscale over pilot plants to full-scale industrial production plants. The research is carried out in close cooperation with industrial companies.

www.kt.dtu.dk/research
Contact: Professor Kim Dam-Johansen
Phone: +45 4525 2845

▲ DPC

The vision of the Danish Polymer Centre (DPC) is to serve society by training candidates for the polymer industry and for the public sector. The centre is devoted to the application of molecular design, synthesis, and processing of polymers to create materials and products with unlimited ranges of properties and applications. DPC strives towards this goal in a balanced environment of education, research, and industrial cooperation.

www.kt.dtu.dk/research
Contact: Associate Professor Anne Ladegaard Skov
Phone: +45 4525 2825

COOPERATING COMPANIES

A P Møller-Mærsk
AVS Einar Willumsen
Akzo Nobel
Alfa Laval
Aminord
Aquaporin
Arla Foods
AstraZeneca UK Limited
B & W Energy
Babcock & Wilcox Valund
Bang & Olufsen
BASF AG
Bayer Technology Services
Biometrics Technology
Biodynamics
BP
Calsep
Chevron
Christiansen
Coloplast
Conocophillips
Dana Lim
Danske Gæsteteknik Center
DONG Energy
DSM, Viktor Wallimann
DuPont
Enmeleiv
Eni
Envidan
ExxonMobil
Fieremich
Finds
Foss
GASSCO
Gassnova
Genel Energy
GlaxoSmithKline
Grundfos
H Lundbeck
Haldor Topsøe
Harper & Vedel
HempeHess
HOFOR
Huntsman Europe
Hwain
IFP
Janssen Pharmaceutica
KBC
KMC
LEGO
Linde
Lloyd’s Register ODS
Lonza AG
Maersk Oil
MAN Diesel & Turbo
Mitsubishi
National Oilwell Varco
Neste Jacobs Oy
Nordic Bioenergy
Novo Nordisk A/S
Novozymes A/S
OMV
Optience Corporation
Palsgaard
Petrobras
Pfizer
PPG Industries
Processum
ProSim
Radiometer Medical
RWE
SCG Chemicals Co.
Schlumberger
Schneider Electric
Shell
Sinpec
SQM
STATOIL
Syngenta
Teta Pak Packaging
Solutions
Total
Unibio
Union Engineering
A more environmentally friendly wood-burning stove with a remote control that allows you to set the room temperature and alerts you when it is time to refuel – the first electronically controlled wood-burning stove is on the market. The stove ensures optimal combustion by controlling the combustion air electronically via regulation of three independent air inlets. © Joachim Rode
In Greek Mythology, Proteus is the god with the ability to transform water. In the world of science, the PROTEUS project is all about the same. The mastermind behind it, Xavier Flores-Alsina, has proposed a new set of mathematical models that will assist process engineers in turning wastewater into a clean and sustainable supply of resources.

PROTEUS funding and partners
The project was sponsored by Marie Curie Actions: International European Fellowships (IEF) for career development and hosted by the Department of Chemical and Biochemical Engineering at the Technical University of Denmark (DTU) with extensive collaboration with other research centres, including:
- inside DTU (Department of Environmental Engineering)
- in Europe (Lund University, Sweden / Catalan Institute of Water Research, Spain)
- outside Europe (University of Queensland, Australia / University of Cape Town, South Africa)
- Specialized Groups of the Internal Water Association (IWA) (physicho-chemical framework, greenhouse gas emissions, benchmarking control strategies on wastewater treatment plants).

PROTEUS outcomes: Software prototypes
The software is used for consultancy, research and it is further developed. Below are the prototypes and final users:
- greenhouse gas emissions (BSM2-GHG): Catalan Institute of Water Research (Spain), Lund University (Sweden), University of Exeter (UK), Stockholm Water (Sweden), IVL (Sweden)
- micro-pollutants (BSM1-MICRO): Catalan Institute of Water Research (Spain), Lund University (Sweden), University of Lorraine (France)
- nutrient recovery (BSM1-pH / BSM2-PCM): University of Lund (Sweden), University of Queensland (Australia), Josef Stefan Institute (Slovenia), University of Cape Town (South Africa), INRA (France), Bioentech (France), EAWG-ETH (Switzerland), Veolia (France).
New mathematical models will help clean and recycle your water

‘Out of sight, out of mind.’ The vision for wastewater treatment has largely revolved around these six words, but times are changing, as the increasing demands for water and energy and their related costs push the scientific community to change its vision. Instead, wastewater is seen as a valuable resource with great potential: Water can be reused to minimize the impacts of exploiting new sources of supply. Nutrients, such as phosphorus, can be recovered in various forms for use in agricultural fertilizers. Energy, in the form of heat and electricity, can be extracted from organics in the wastewater via anaerobic digestion to offset the power demands of the treatment facility.

This year, Xavier Flores-Alsina, a former Marie Curie Research Fellow at the CAPEC-PROCESS research centre, finished his development of a new set of mathematical models which describe exactly these resource recovery challenges. The name of his Marie Curie project was PROTEUS (PROcess models to simulaTE, benchmark and control Urban wastewater treatment Systems).

According to Xavier Flores-Alsina, the PROTEUS project will have a very positive impact within the water industry as engineering companies make extensive use of wastewater treatment models for design optimization and control of water treatment facilities.

The models should be available for everyone

The new set of models will help make these processes more efficient in terms of improving effluent quality, reducing energy consumption, increasing energy recovery and finally minimizing greenhouse gas emissions. As such, the model library offers great potential to a wide audience of professionals.

‘It’s very important for me and the research group to make the models available in order to increase international exposure. We distribute these models to support decision-making among water professionals, process managers and environmental engineers around the world,’ says Xavier Flores-Alsina.

He expects that many of the new models will also be implemented by specialized software companies. The models will be integrated into software packages that will allow users to evaluate and explore new ways to operate wastewater treatment facilities by developing, implementing and simulating new plant-wide control strategies and operational procedures.

In addition, the models will play an important role in education. According to Krist Gernaey, Head of the CAPEC-PROCESS research centre, Xavier Flores-Alsina’s research work has first of all demonstrated the growing importance of mathematical modelling and the use of chemical engineering methods and tools to the wastewater treatment field.

‘By distributing the models resulting from the PROTEUS project, CAPEC-PROCESS has become one of the leading groups in this field. In future, we expect Xavier to further develop this area and to establish a small research team within the centre with focus on resource recovery,’ says Krist Gernaey.

Strong international collaboration made it possible

Xavier Flores-Alsina stresses that international collaboration was a key factor for the success of the PROTEUS project. During the development of the project, he had research stays at the University of Queensland in Australia and the University of Cape Town in South Africa and also collaborated with Lund University and several Specialist Groups of the International Water Association (IWA).

In general, he feels that his international experiences have brought him far. In particular, they played a big role in 2013 when he got the exciting news that his PROTEUS project was awarded within the competitive Marie Curie Actions call for Intra-European Fellowships for career development.

‘I think my strong international background and long history of collaboration with many different universities from different countries were crucial to get the grant. For example, all my publications involve at least three research groups and I did my PhD between the University of Girona in Spain, the University of Oxford in the UK and DTU in Denmark,’ says Xavier Flores-Alsina.

< The figure shows a tree dimensional representation of different wastewater treatment operational procedures. The different axes represent effluent quality (x), economical cost (y) and greenhouse gas emissions (z), all of which are quantified by the models developed within the PROTEUS project.
This year, a new research centre has been established at DTU Chemical and Biochemical Engineering. The centre, with the eloquent short name PILOT PLANT, will be doing research in and teach experimental process and equipment design – and that is good news for students, researchers and companies.

Main activities of PILOT PLANT
The large scale experimental process activities of PILOT PLANT will be conducted with a strong focus on industrial practice. As a result, the main activities include unit operations, reaction engineering, process control, process and plant design, instrumentation, automation and industrial measuring technology, scale-up and scale-down as well as batch versus continuous processes. Special focus areas are fermentation mainly from a process point-of-view and particle technology.

Current projects
The project portfolio of the PILOT PLANT research centre currently includes participation in projects on, for instance, microbial conversion of slaughterhouse waste, syngas fermentation and downstream processing of the liquids products, along with fermentation experiments for the new bio-tech cluster BIOPRO.

Technical competences:
- Designing and building large scale plants (engineering, construction)
- Unit operations (theory and practice)
- Industrial chemical processes (designing the entire process)
- Operational experience, solving practical process problems
- Project management
- Plant safety
- GMP (Good Manufacturing Practice)
- Wide industry contact
A new research centre for experimental process and equipment design

Whenever a new medicine is invented or a new way of turning biomass into chemicals, materials or energy sees the light of day, it is the result of a process. More often than not, this process is highly complex and consists of many unit operations and reactions each playing a specific and important role in creating the perfect mix of process conditions. In food and pharma for instance, reliability in the process is essential as even a slight change may cause danger to the consumer. Similarly, production safety is critical in order to avoid causing harm to plant workers or to the environment. The new research centre aims to improve these processes by giving students, researchers and companies an opportunity to test them in real-life conditions in pilot plants.

A pilot plant with state-of-the-art facilities

The research centre may be new, but the pilot plant in which it operates is not. In fact, the pilot plant is the result of a long strategic process. For many years, DTU Chemical Engineering has invested in developing its pilot scale facilities with state-of-the-art equipment.

‘While other universities were cutting their investments in pilot plants, we were increasing our efforts, and that means we have some quite unique facilities today. And, the large scale facilities are really needed,’ says Head of the new PILOT PLANT research centre, Lars Kiørboe and continues, 'Too many ideas never go beyond laboratory level because of practical problems associated with upscaling and full-scale implementation. Many processes are not implemented in an optimal way because of lack of know-how.'

According to Lars Kiørboe, SMEs can also benefit from the new research centre as they often do not have the opportunity to establish pilot plants whenever they need to test a new process. At the PILOT PLANT research centre, SMEs will get access to a wide range of units staffed with experts. By providing access to research facilities and expert knowledge of industrial processes, the new research centre aims to help improve the market positions of the partners of DTU Chemical Engineering.

‘Our research is aimed at improving existing industrial processes by making them more efficient, more economical and, not least, greener. In this way, we hope to contribute to making our industrial partners more competitive,’ says Lars Kiorboe.

Programmes that put theory into practice

According to Lars Kiørboe who together with his team of colleagues from PILOT PLANT teaches courses in unit operations, the competitiveness of the industry will not come only from researching processes – the processes also have to be operated properly. That involves educating competent engineers that are not notoriously tied to their desk. Therefore, the courses that are conducted at the pilot plant have a strong focus on practical application. Furthermore, the purpose of the courses is to make sure that future engineers have the necessary practical background in terms of knowing how processes are connected, how to design and construct processing plants, equipment and components and how to work with large plants themselves.

‘It’s the combination of theory and practice that makes a real difference, because the engineers that we’re educating are ready to go straight to work, and that will be a great benefit for companies now and in the future,’ explains Kiorboe.

< 91 students from all over the world attended the three and four-week courses of this year’s Summer University where they were taught how to operate pilot plants and utilize the results for design and scale-up purposes. Photo by Rasmus Højmark Ravn
Gas hydrates can seriously threaten the recovery of oil and gas from the seas as they can block the transmission lines leading to a stop in production – or worse – an explosion. New research shows that antifreeze proteins from fish combined with lower solid surface tension in the pipelines can ensure a continuous flow and at the same time reduce the use of toxic or hazardous chemicals.

The BioRec programme runs from 2011 to 2016. Funding is provided by the Innovation Fund Denmark and by the industry partners.

Partners of the BioRec programme are: DTU, the Danish Institute of Technology (DTI), the world’s leading enzyme producer, Novozymes, and the two Danish energy corporations Maersk Oil and DONG Energy. Roskilde University was also a partner in BioRec. Their task was to supply protein and to upscale the insect protein production.
Fish and insects may save the oil industry barrels of money

There is still much oil and gas to be found in the underground; however, retrieving it calls for new technologies. The BioRec project investigates how microbes and enzymes may be used to enhance oil recovery, how to avoid microbially induced corrosion, and whether antifreeze proteins can be applied for inhibition of gas hydrates in the pipelines. The last-mentioned research objective was realised this year through a PhD project by Christine Malmos Perfeldt.

Gas hydrates are formed when the transmission lines are exposed to the high pressures and low temperatures of the sea. The gas molecules are trapped inside ‘cages’ of frozen water molecules creating substances resembling ice that can block the lines. To avoid gas hydrates, oil producers are often left with a choice between using toxic and highly flammable chemicals or so-called kinetic inhibitors such as water-soluble polymers. Although the kinetic inhibitors may be a more sustainable solution, they are not allowed in the North Sea.

Proteins instead of polymers

Some plants, bacteria, fish, and insects, especially in arctic and other low temperature regions, develop a special protein that prevent them from freezing solid when temperatures drop to extreme lows. Antifreeze proteins from fish are already used commercially in, for instance, the food industry for preventing the formation of ice crystals in frozen vegetables. However, as Perfeldt’s work shows, it can also potentially be used as a more sustainable solution for oil recovery in the North Sea.

'I found out that the combination of the naturally occurring proteins in fish and a hydrophobic surface could significantly reduce the hydrate formation. In fact, it was just as efficient as a ten times higher concentration in weight percentage of a commercial inhibitor in a stainless steel – or non-coated – surface,' explains Perfeldt.

A promising little beetle

Perfeldt’s thesis also shows that the antifreeze protein from the longhorn bark beetle Rhagium mordax could perform as efficiently as a commercially used polymer inhibitor.

‘Compared to fish that show antifreeze activity up to 1.5°C, the antifreeze activity of the longhorn bark beetle is 8°C. However, the insect protein is still too expensive to be used commercially, and more research into why it works is needed in order to potentially imitate the protein synthetically. Yet, there’s no doubt that this protein shows much promise,’ concludes Christine Malmos Perfeldt.

Greener tools for exploration of the big blue

According to Associate Professor Nicolas von Solms, who is also a participant in the BioRec project, greener tools for oil and gas recovery will continue to be of high priority at the AT CERE research centre.

‘Oil and gas will continue to be a major part of the global energy picture for a long time. Therefore, we need methods to produce oil and gas in a more sustainable way. The search for greener gas hydrate inhibitors is part of this strategy and fits in with our ongoing research in gas hydrates, their properties, their elimination, and their uses. It also contributes to current efforts aimed at producing oil and gas using cleaner and more efficient technology,’ says Nicolas von Solms.
The potential of bio-based products depends strongly on how attractive they are in economic and environmental terms. New membrane technology from the BioEng research centre may be the solution needed to overcome some of the major hurdles that bio-products face.

Facts about the technologies

The ‘Fouling Induced Enzyme Immobilization’ technique uses the support of polymer membranes as matrixes for enzyme immobilization. Once immobilized, the membrane support is coated with a layer of polydopamine, which prevents enzyme leakage and makes it possible to recover the initial permeability of the membrane. The technique is a result of BIOVALUE SPIR (Strategic Platform for Innovation and Research on Value-Added products from Biomass), in which four employees from BioEng participate: Manuel Pinelo, Anne Meyer, Lene Lange, and Henning Jørgensen.

The ‘Forward Osmosis Aquaporin Membrane’ technology is based on naturally occurring membrane-bound water transport proteins (aquaporins), which form channels through the cell membranes. The technology is a vital part of the Danish platform IBISS (Industrial Biomimetic and Biosensing Membranes), in which four employees from DTU Chemical Engineering are involved: Hariklia Gavala, Lene Lange, and Stavros Kalafatakis from BioEng as well as Loannis Skiadas from PILOT PLANT.
Membranes pave the way for a brighter bio-future

The realization of a more bio-based future is well underway, but the journey toward solutions that are environmentally and economically attractive continues. For example, the use of enzymes in industrial production is often costly, while bio-based chemicals and fuels face several difficulties, which stand in the way of an attractive production.

The answers to these challenges, however, may not be far away, thanks to efforts from BioEng Research Center. The tools in question: new membrane technology concepts based on biological insight and innovative thinking, which makes it possible to enhance the stability and reuse potential of enzymes and offer highly promising solutions for water recovery in bio-refineries and reducing CO₂ levels.

The host of millions of enzymes
One of the major outcomes of BioEng’s efforts is the creation of a membrane with the ability to host millions of enzymes. The foundation of this technology is the so-called ‘Fouling-induced Enzyme Immobilization’, a new technique developed at BioEng, which the research centre currently uses to convert CO₂ into formic acid, formaldehyde, and methanol.

The results of the technique have been positive: It increases the stability of the enzymes involved in an enzyme reaction, ensures good performance for several cycles, and allows the user to immobilize several and different types of enzymes in the same membrane. Remarkably, this makes it possible to regenerate important cofactors, which, in short, are molecules that help enzymes complete a reaction.

‘Membrane bioreactors are easy to control and scale up. This makes them particularly interesting for the new generation of industrial products that are produced from metabolic pathways, a series of chemical reactions in which enzymes are costly and often require the use of cofactors,’ says Associate Professor Manuel Pinelo.

A solid solution to some major bottlenecks
Membranes may also play a significant role in bio-refineries in the future. More specifically, the so-called ‘Forward Osmosis Aquaporin Membrane’ technology – developed by the Danish company Aquaporin A/S and tested by BioEng – could prove to be a very effective and important tool in the solution of several challenges.

In particular, substrate and product inhibition often hinder the formation of highly concentrated bio-products, such as fuels and chemicals. One of the main advantages of the ‘Forward Osmosis Aquaporin Membrane’ technology is the possibility to couple it to any bioconversion process that faces these difficulties in order to overcome them.

‘Biological processing of biomass holds great potential for a sustainable production of bio-based chemicals and fuels, but we need to resolve some major bottlenecks in order to reach an environmentally and economically attractive solution. This technology could provide a solution for water recovery and up-concentration of products while reducing the cost of the separation,’ says Associate Professor Hariklia Gavala.

In collaboration with the PILOT PLANT research centre, BioEng is currently developing a process scheme that will uncover and demonstrate the potential of water recovery and recirculation in bio-refineries.
People. Planet. Profit. Coatings can contribute to improving the triple bottom line of companies. Whether they are providing people with longer escape times during fires, protecting the planet from excessive CO₂ emissions from the maritime industry or preventing production stops to secure the profit of the cement industry, they are doing so as a result of extensive research. Over the years, the CHEC research centre has brought important insights to the science of coatings.

Coatings research in CHEC
Research into coatings is an important part of the portfolio of the CHEC research centre which provides in-depth knowledge on current coatings performance. The centre also develops mathematical models that quantify coating behaviour and designs experimental equipment for testing coatings. The CHEC’s approach is based on classic chemical engineering tools combined with formulation expertise. The usefulness of the coatings research is secured through a close collaboration with the industry.

CHEC is currently active within a wide range of coatings:
- antifouling coatings for biofouling control
- anticorrosive coatings for corrosion prevention
- intumescent coatings for passive fire protection
- erosion-resistant blade coatings for wind turbines.

Biofouling: When microorganisms, plants, algae, or animals accumulate on the hulls of ships. Biofouling causes increased friction between the water and the ship hull. Consequently, the amount of fuel needed to sail increases, causing harm to the environment and increasing costs for the maritime industry.

Søren Kiil places a coating sample in the High Pressure Coatings Setup in order to test its ability to withstand exposure to seawater and gases at high pressure and high temperature, simulating the conditions of oil and gas pipelines.
Coatings for the protection of triple bottom lines

In the late 1990s, CHEC initiated some of the very first projects that were to create robust coatings to protect ships against biofouling, i.e. the accumulation of microorganisms, plants, algae, or animals on the hulls during their often long voyages. Fouling represents a serious environmental and financial challenge to the maritime industry, as the fuel consumption of the ships is directly related to the level of fouling. As the surface becomes more and more rough, the amount of energy needed to carry the same speed increases.

New methodologies for testing coatings
To a company delivering antifouling coatings to the maritime industry, producing a coating that does not live up to its promise can be devastating for business. Therefore, much time goes into testing. However, according to a PhD project published this year by Asger Lindholdt, currently applied testing methods do not always paint a realistic picture, as they only include testing of newly coated ships or they are only tested in a static environment that does not account for the fact that the ships are moving most of the time.

‘In reality, the coating is exposed to many different marine environments, weathers, and amounts of friction depending on how much, where and at which speed the ship is sailing,’ explains Lindholdt.

Together with a team of colleagues from CHEC, he designed a raft that was placed in the murky waters of Roskilde Bay for two fouling seasons, one year in total. On the raft were cylinders with different coatings that spend approximately 60% of the time turning in order to simulate sailing, and approximately 40% of the time staying still to simulate the ship lying in harbour.

‘I hope this new method will give coating companies a better opportunity to discover faults in the coatings during the early stages of testing and thereby provide their customers with more accurate guarantees,’ says Lindholdt.

Lindholdt’s supervisors Professor Kim Dam-Johansen and Associate Professor Søren Kiil have 34 years of experience with coatings research between them, and according to Søren Kiil the testing of coatings is quite a significant research area.

‘Another project that we completed this year was on blade coatings for wind turbines. In this project, we designed and constructed an accelerated test method for rain erosion and we were able to investigate the mechanisms underlying this complex phenomenon,’ says Søren Kiil and continues, ‘We also have some new and exciting projects for the testing of coatings. For instance, we have recently started a large project in collaboration with FLSmidth and Hempel. In this collaboration, which is supported by Innovation Fund Denmark, we aim to design new accelerated test methods and coatings for the cement and mineral industries to meet challenges related to acids and abrasive particles as well as sticky raw materials such as moist clay and gypsum.

Last, but not least, we are also investigating anticorrosive coatings for high-pressure conditions which can be used in oil and gas pipelines. In this regard, a flexible pilot plant for testing under such extreme conditions has been built and we are now starting to experiment with various gases,’ explains Søren Kiil.

Coatings reduce costs and improve work environments
Anticorrosive coatings are also a way for companies to reduce their costs. The annual costs related to corrosion and corrosion prevention have been estimated to make up a significant part of the gross national product in the Western world. Furthermore, apart from economic costs and technological delays, corrosion may also have dramatic consequences for people and the surrounding environment when, for instance, corrosion causes failures of bridges, buildings, aircrafts, automobiles, and gas pipelines.

Dangerous situations do not only derive from corrosion failures. In production environments, for instance, workers need to be protected in their daily work. In this connection, new research into insulating coatings and intumescent coatings can help create a safer work environment.

‘This year, we have conducted projects on insulation coatings which can ensure “safe-touch” properties for workers on chemical plants and reduce heat loss from pipes and process equipment,’ says Søren Kiil, who has also in the past delivered important research into intumescent coatings that, for instance, can buy people precious time whenever a fire erupts – thus underlining the broad usability and not least the importance of coatings for our people, planet, and profits.
A new, more sustainable material developed by Jon Trifol Guzman can solve the most common challenges of bioplastics such as brittleness, moderate barrier properties, and low heat resistance. This material actively protects food from degradation.

Facts about the PhD project

The project by Jon Trifol Guzman is entitled: ‘Novel Clay/Nanocellulose Biocomposite Films and Coatings in the Context of New Packaging Materials’ and was a project within the framework of the Marie Curie programme that was supervised by Peter Szabo, Anders Daugaard, and Ole Hassager.

The project is part of the interdisciplinary research training network, Marie Curie, which includes eight European universities – including the Danish Polymer Centre at DTU – as well as three research institutes and six enterprises.

The network received funding through the EU 7th Framework Programme. The Marie Curie PhD Fellows have developed a personal network, and the research groups have used the network to establish new projects such as the COST Action for active and intelligent packaging.

A sample of one of the bioplastics developed by Jon Trifol Guzman. This transparent material is made entirely of cellulose and it is a sustainable alternative to petroleum-based plastic.

Jon Trifol Guzman together with his supervisors Associate Professor Peter Szabo and Associate Professor Anders Daugaard.
Combining nanocellulose and nanoclay to make the perfect sustainable plastic

There are plenty of arguments for investing in research into bioplastics. Especially polyactic acid (PLA) continues to show much promise for sustainable food packaging. PLA is both bio-based and biodegradable and is thus a good alternative to petrochemical-based plastics. Bioplastics made from PLA are already available in the market. Yet PLA in its pure form has important limitations, such as low thermal resistance, which makes thermoforming (fabrication of the product from the molten plastic) a challenge and limits its uses in high-temperature applications. Furthermore, without additives PLA does not provide an adequate barrier against oxygen and water in the surrounding environment, which leads to faster degradation of the food, and finally pure PLA is highly brittle. Therefore, much research is devoted to finding the right additives to PLA in order to extend its uses and make it stronger. This year, a PhD project by Jon Trifol Guzman showed interesting results that may solve these issues.

“There are plenty of arguments for investing in research into bioplastics. Especially polyactic acid (PLA) continues to show much promise for sustainable food packaging. PLA is both bio-based and biodegradable and is thus a good alternative to petrochemical-based plastics. Bioplastics made from PLA are already available in the market. Yet PLA in its pure form has important limitations, such as low thermal resistance, which makes thermoforming (fabrication of the product from the molten plastic) a challenge and limits its uses in high-temperature applications. Furthermore, without additives PLA does not provide an adequate barrier against oxygen and water in the surrounding environment, which leads to faster degradation of the food, and finally pure PLA is highly brittle. Therefore, much research is devoted to finding the right additives to PLA in order to extend its uses and make it stronger. This year, a PhD project by Jon Trifol Guzman showed interesting results that may solve these issues.

The thermomechanical properties of PLA have already been proved to be enhanced with the addition of nanocellulose, but I wanted to find out what happens when you combine nanocellulose and nanoclay in a polymer matrix, so I extracted high-purity nanocellulose from sisal fibres by a novel, simple, and easily up-scalable process. Composites with this nanocellulose reinforced the PLA as expected, but what was particularly interesting was the dramatic synergistic effect that became evident from the combination,’ explains the PhD.

Ten times faster production rate and a longer shelf-life

The combination not only made the PLA stronger, it also improved the possible production rate.

“When I investigated the hybrid composites further in terms of size and type of crystalline and amorphous domains of the polymer, I was able to explain the effect of the two fillers. What I found was that the combination not only resulted in better crystals, it also produced them ten times faster. You can imagine that this can make quite a difference in industry.’

The project also shed light on the key parameters of the controlled release of active components for use in packaging materials. In particular, the use of oregano extracts in combination with packaging materials is interesting, since oregano extracts are known to kill the bacteria that degrade the food, which means a controlled release of those compounds would potentially enhance the shelf-life of the food.

A 95-99% biodegradable plastic

The additives in bioplastics are often criticized for not being degradable. However, according the new findings, the amount of additives can be reduced quite a bit. By adding a very small amount of the two additives – actually just 1% nanocellulose and 1% nanoclay – you can greatly improve the bioplastic properties. Depending on the conditions, the improvement on barrier properties was up to 90%–and at industrial level this could be even higher, since the faster crystallization usually seen during industrial processing was not taken into account. Also, the new material was proven to have a significantly improved thermal resistance of up to 80 ºC.

‘Of course, nanoclay is not biodegradable, but on the other hand it is basically soil, and in such small amounts the bioplastic will still be at least 95-99% biodegradable. That means the industry is now very close to having a sustainable and useful food packaging,’ says Jon Trifol Guzman.

Future perspectives of DPC

According to the new Head of DPC, Associate Professor Anne Ladegaard Skov, the PhD project is a good example of the direction in which the research at DPC is going.

‘In a world that seems to be running into consumption overdrive, sustainable materials are currently of high priority in the polymer society where researchers are racing against time to provide bio-based, biodegradable, and bio-sustainable products for companies and customers worldwide. DPC takes an active role in this development as partners in two EU projects and one national project where focus has been on the material development as well as material characterization. DPC holds all facilities for this and is therefore a natural partner,’ says Anne Ladegaard Skov.
Assistant Professor Jakob Munkholt Christensen was titled ‘Educator of the Year’ at the DTU Annual Party on 8 May 2015. Jakob Munkholt Christensen teaches ‘Unit Operations of Chemical Engineering and Biotechnology’ for two BEng programmes and ‘Progress in Research’ and ‘SDC Summer School in Unit Operations’ for the MSc programme in Chemical and Biochemical Engineering at the Sino-Danish Center (SDC) in Beijing. ©Mikal Schlosser.
Programmes at DTU Chemical and Biochemical Engineering

The department participates in two 3½ year Bachelor of Engineering programmes in Chemical and Biochemical Engineering and Chemistry and Business Economy, a three-year Bachelor of Science programme in Chemistry and Technology, three two-year Master of Science programmes in Applied Chemistry, Chemical and Biochemical Engineering, which includes an Honours programme, and Petroleum Engineering, and finally a Sino-Danish Master of Engineering programme in Chemical and Biochemical Engineering.

Our students work both theoretically and experimentally with the core disciplines in chemical engineering such as unit operations, transport phenomena, reaction engineering, mathematical modelling, and thermodynamics. They are taught by faculty specializing in these areas with applications in energy conversion, enzyme technology and biotechnology, polymers, computer modelling, process and product design.

COURSES 1 SEPTEMBER 2014 - 31 AUGUST 2015

PHD COURSES

28901 Advanced Computer Aided Modelling
28902 Process & Tools Integration
28904 Soft Matter Physics
28905 Advanced Topics in Process Systems Engineering
28908 Rheology of complex fluids
28909 Thermodynamics Models, Fundamentals and Computational Aspects
28915 Petroleum Reservoir Fluids, Properties and Production
28917 Statistical Thermodynamics for Chemical Engineering
28923 Uncertainty and Sensitivity Analysis of Numerical Models
28924 Process Engineering Laboratory
28926 Fundamentals and Industrial applications
28927 Advanced Topics in Process Technology
28928 Electrolyte Solution Thermodynamics
28930 Advances in Chemical and Biochemical Engineering
28931 Biorefinery and Sustainability

SINO-DANISH CENTER (SDC) COURSES

88700 Industrial Reaction Engineering
88701 Transport Processes
88702 BioProcess Engineering
88703 Laboratory Experiments
88704 Progress in Research
88705 Process Design - Principles & Methods
88707 Energy and Sustainability
88708 Green Chemical Engineering
88713 SDC Green Challenge
88714 SDC Summer School in Unit Operations
88715 Biorefinery
MSC, BSC AND BENG COURSES

Below, course numbers and names are shown for 2015, with the number of students attending shown in brackets. Courses for Bachelor of Engineering are marked with a (B). The other courses are Bachelor of Science courses, Master of Science courses or common courses.

SPRING SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>28001</td>
<td>Introduction to Chemistry and Chemical Engineering</td>
<td>49</td>
</tr>
<tr>
<td>28012</td>
<td>Chemical and Biochemical Process Engineering</td>
<td>70 (B)</td>
</tr>
<tr>
<td>28016</td>
<td>Mathematical models for chemical and biochemical systems</td>
<td>61 (B)</td>
</tr>
<tr>
<td>28017</td>
<td>Chemical and Biochemical Process Engineering</td>
<td>22 (B)</td>
</tr>
<tr>
<td>28020</td>
<td>Introduction to Chemical and Biochemical Engineering</td>
<td>70</td>
</tr>
<tr>
<td>28022</td>
<td>Unit Operations of Chemical Engineering and Biotechnology</td>
<td>68 (B)</td>
</tr>
<tr>
<td>28025</td>
<td>Bio Process Technology</td>
<td>71</td>
</tr>
<tr>
<td>28121</td>
<td>Chemical Unit Operations Laboratory</td>
<td>22</td>
</tr>
<tr>
<td>28122</td>
<td>Chemical Unit Operations Laboratory - three-week Summer University Laboratory</td>
<td>8</td>
</tr>
<tr>
<td>28124</td>
<td>Summer course in chemical process and plant design</td>
<td>25</td>
</tr>
<tr>
<td>28157</td>
<td>Process Design</td>
<td>11 (B)</td>
</tr>
<tr>
<td>28160</td>
<td>Mathematical models for chemical systems</td>
<td>35</td>
</tr>
<tr>
<td>28121</td>
<td>Polymer Chemistry</td>
<td>19</td>
</tr>
<tr>
<td>28212</td>
<td>Polymer Synthesis and Characterization</td>
<td>13</td>
</tr>
<tr>
<td>28221</td>
<td>Chemical Engineering Thermodynamics</td>
<td>28</td>
</tr>
<tr>
<td>28231</td>
<td>Laboratory in Chemical and Biochemical Engineering</td>
<td>28</td>
</tr>
<tr>
<td>28270</td>
<td>Industrial Ecology</td>
<td>11</td>
</tr>
<tr>
<td>28322</td>
<td>Chemical Engineering Thermodynamics</td>
<td>31 (B)</td>
</tr>
<tr>
<td>28342</td>
<td>Chemical Reaction Engineering</td>
<td>24 (B)</td>
</tr>
<tr>
<td>28345</td>
<td>Chemical Reaction Engineering</td>
<td>35</td>
</tr>
<tr>
<td>28350</td>
<td>Process Design: Principles and Methods</td>
<td>42</td>
</tr>
<tr>
<td>28352</td>
<td>Chemical Process Control</td>
<td>12 (B)</td>
</tr>
<tr>
<td>28415</td>
<td>Oil and Gas Production</td>
<td>51</td>
</tr>
<tr>
<td>28423</td>
<td>Phase Equilibria for Separation Processes</td>
<td>24</td>
</tr>
<tr>
<td>28434</td>
<td>Membrane Technology</td>
<td>43</td>
</tr>
<tr>
<td>28443</td>
<td>Industrial Reaction Engineering</td>
<td>23</td>
</tr>
<tr>
<td>28451</td>
<td>Optimizing Plantwide Control</td>
<td>17</td>
</tr>
<tr>
<td>28850</td>
<td>Quality by Design (QbD): Integration of product and process development</td>
<td>37</td>
</tr>
<tr>
<td>28852</td>
<td>Risk Assessment in Chemical Industry</td>
<td>39</td>
</tr>
<tr>
<td>28855</td>
<td>Good Manufacturing Practice</td>
<td>60</td>
</tr>
<tr>
<td>28864</td>
<td>Introduction to Matlab Programming</td>
<td>28</td>
</tr>
<tr>
<td>28871</td>
<td>Production of Biofuels</td>
<td>14</td>
</tr>
<tr>
<td>28885</td>
<td>Technology and Economy of Oil and Gas Production</td>
<td>44 (B)</td>
</tr>
<tr>
<td>28891</td>
<td>Research Immersion</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses given in co-operation with other departments:

- 26316 Analysis and Chromatography (40)
- 27944 Biotechnology and process design (34) (B)
- 41683 Materials Science (44) (B)

FALL SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>28012</td>
<td>Chemical and Biochemical Process Engineering</td>
<td>79 (B)</td>
</tr>
<tr>
<td>28016</td>
<td>Mathematical models for chemical and biochemical systems</td>
<td>45 (B)</td>
</tr>
<tr>
<td>28022</td>
<td>Unit Operations of Chemical Engineering and Biotechnology</td>
<td>44 (B)</td>
</tr>
<tr>
<td>28121</td>
<td>Chemical Unit Operations Laboratory</td>
<td>35</td>
</tr>
<tr>
<td>28140</td>
<td>Introduction to Chemical Reaction Engineering</td>
<td>42</td>
</tr>
<tr>
<td>28150</td>
<td>Introduction to Process Control</td>
<td>39</td>
</tr>
<tr>
<td>28157</td>
<td>Process and product design</td>
<td>11 (B)</td>
</tr>
<tr>
<td>28213</td>
<td>Polymer Technology</td>
<td>38</td>
</tr>
<tr>
<td>28333</td>
<td>Recovery and Purification of Biological Products</td>
<td>50</td>
</tr>
<tr>
<td>28242</td>
<td>Chemical Kinetics and Catalysis</td>
<td>44</td>
</tr>
<tr>
<td>28244</td>
<td>Combustion and High Temperature Process</td>
<td>56</td>
</tr>
<tr>
<td>28246</td>
<td>Applied Enzyme Technology and Kinetics</td>
<td>54</td>
</tr>
<tr>
<td>28247</td>
<td>Advanced Enzyme Technology</td>
<td>21</td>
</tr>
<tr>
<td>28272</td>
<td>Engineering and Environmental Sustainability</td>
<td>21</td>
</tr>
<tr>
<td>28310</td>
<td>Chemical and Biochemical Product Design</td>
<td>55</td>
</tr>
<tr>
<td>28315</td>
<td>Colloid and Surface Chemistry</td>
<td>70</td>
</tr>
<tr>
<td>28316</td>
<td>Laboratory Course in Colloid and Surface Chemistry</td>
<td>13</td>
</tr>
<tr>
<td>28322</td>
<td>Chemical Engineering Thermodynamics</td>
<td>33 (B)</td>
</tr>
<tr>
<td>28342</td>
<td>Chemical Reaction Engineering</td>
<td>13 (B)</td>
</tr>
<tr>
<td>28352</td>
<td>Chemical Process Control</td>
<td>18 (B)</td>
</tr>
<tr>
<td>28361</td>
<td>Chemical Engineering Model Analysis</td>
<td>37</td>
</tr>
<tr>
<td>28420</td>
<td>Separation Processes</td>
<td>44</td>
</tr>
<tr>
<td>28515</td>
<td>Enhanced Oil Recovery</td>
<td>41</td>
</tr>
<tr>
<td>28530</td>
<td>Transport Processes</td>
<td>54</td>
</tr>
<tr>
<td>28811</td>
<td>Polymers in Processes and Products</td>
<td>12</td>
</tr>
<tr>
<td>28831</td>
<td>Computational fluid dynamics in chemical engineering</td>
<td>12</td>
</tr>
<tr>
<td>28845</td>
<td>Chemical Reaction Engineering Laboratory</td>
<td>24</td>
</tr>
<tr>
<td>28864</td>
<td>Introduction to Matlab Programming</td>
<td>26</td>
</tr>
<tr>
<td>28870</td>
<td>Energy and Sustainability</td>
<td>91</td>
</tr>
<tr>
<td>28872</td>
<td>Biorefinery</td>
<td>26</td>
</tr>
</tbody>
</table>

Courses given in co-operation with other departments:

- 23522 Rheology of food and biological materials (8)
- 26010 Introductory Project in Chemistry (62)
- 27004 Health, Diseases and Technology (59)
- 27944 Biotechnology and process design (11) (B)
- 41657 Materials Science for Chemists (46)
- 41683 Materials Science (22) (B)
BACHELOR OF ENGINEERING DEGREES

19 students finished their research projects for the BEng degree. The project titles and names of the students are listed below:

<table>
<thead>
<tr>
<th>Name</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abatzis, Jimmie</td>
<td>SmartWater Flooding</td>
</tr>
<tr>
<td>Abdulrahman, Tareq</td>
<td>Scale up of Pharmaceutical Ethanol Production</td>
</tr>
<tr>
<td>Arp, Nadia Hedegaard</td>
<td>Modeling of SLE for salts in mixed solvents</td>
</tr>
<tr>
<td>Bjerregaard, Matias Falk</td>
<td>Crystallization of AlCl3.6H2O in acidic leaching of Anorthosite</td>
</tr>
<tr>
<td>Bülow-Nielsen, Martin</td>
<td>Comparison of three electrolyte models for the carbon capture with aqueous ammonia</td>
</tr>
<tr>
<td>Foelsby, Jonas Richard</td>
<td>Modeling of the Thermal Conductivity of Salt Solutions</td>
</tr>
<tr>
<td>Gahozo, Maria Ange</td>
<td>Sulphur dioxide removal from marine exhaust</td>
</tr>
<tr>
<td>Ghazvini, Mohammad Shabani</td>
<td>Sensitivity Analysis of Production of Pharma Grade Ethanol</td>
</tr>
<tr>
<td>Kadir, Zryan A</td>
<td>Improvement of the Production Sanitation in Hollow Fibers Ultrafiltration System</td>
</tr>
<tr>
<td>Knudsen, Rikke Kirstine</td>
<td>The influence of additives on the thermal properties of PLA</td>
</tr>
<tr>
<td>Larsen, Michael Roland</td>
<td>Acidic Leaching of Anorthosite</td>
</tr>
<tr>
<td>Leth-Møller, Søren</td>
<td>Selenium removal from waste water - an experimental study</td>
</tr>
<tr>
<td>Munyambuga, Zack Ezechiel, and Merve Ocal</td>
<td>Experimental and Numerical Study of the Behaviour of Enzyme Catalyzed Reactions in a Micoreactor</td>
</tr>
<tr>
<td>Rasmussen, Tanja Nargaard</td>
<td>Sugar crystallization, experimental examination and implementation of inhibition</td>
</tr>
<tr>
<td>Schreiber, Jes Peter</td>
<td>Barrier coatings for fiber based packaging</td>
</tr>
<tr>
<td>Taleb, Moujahid Jawad Ali</td>
<td>Conversion of refuse derived fuels (RDFs) under calciner conditions</td>
</tr>
<tr>
<td>Westh, Andreas Gudmundsson</td>
<td>Preparation and Testing of 3d Printable Formulations with Controllable Mechanical Properties</td>
</tr>
<tr>
<td>Özböyük, Yasemin</td>
<td>Analysis of Fouling in Hollow - Fiber</td>
</tr>
</tbody>
</table>

MASTER OF SCIENCE DEGREES

78 students finished their research projects for the MSc degree. The project titles and names of the students are listed below:

<table>
<thead>
<tr>
<th>Name</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aarsheim, Vegard Eriksen</td>
<td>The effect of antiagglomerants on hydrate formation in real systems</td>
</tr>
<tr>
<td>Afzal, Mamuna</td>
<td>Experimental Study of Enzyme Applicability for Enhanced Oil Recovery</td>
</tr>
<tr>
<td>Akhani, Mehrdad</td>
<td>Smart waterflooding of petroleum reservoirs: verifying the models with experimental data</td>
</tr>
<tr>
<td>Ahlimann-Ohlsen, Elisabeth</td>
<td>Enzymatic degradation of tattoo inks</td>
</tr>
<tr>
<td>Akhtar, Anam</td>
<td>Characterization of polymer properties as a function of E-beam irradiation dosage</td>
</tr>
<tr>
<td>Al Baiati, Ammar Saheb Jaafer</td>
<td>Diffusion Modeling</td>
</tr>
<tr>
<td>Almoor, Karim</td>
<td>Thermodynamic Modeling of CO2 Capture Process Based on Amine Mixture</td>
</tr>
<tr>
<td>Amiri, Zohreh</td>
<td>Anticorrosive coatings and interlayer adhesion loss</td>
</tr>
<tr>
<td>Amundsen, Aleksander Fjaerestad</td>
<td>MEOR: Modeling and numerical simulations</td>
</tr>
<tr>
<td>Andersen, Casper Ørså</td>
<td>Chitosan encapsulation of enzymes for detergents</td>
</tr>
<tr>
<td>Andersen, Hans Erik Samuel</td>
<td>HCN synthesis with bimetallic alloys</td>
</tr>
<tr>
<td>Andersen, Patrick Alexander Schjett</td>
<td>Computational Fluid Dynamic Modeling of a Novel Rotating Flow Cell</td>
</tr>
<tr>
<td>Andersen, Simon Koeoed</td>
<td>Kinetics for carbon formation in prereforming</td>
</tr>
<tr>
<td>Åsgeirsson, Thorvaldur Tollí</td>
<td>Modeling gas separation in polymer membranes</td>
</tr>
<tr>
<td>Bach, Christian</td>
<td>Modeling of Crystal Dissolution in Downstream Processes of Enzymatic Proteins</td>
</tr>
<tr>
<td>Balzarotti, Riccardo Angelo Carlo</td>
<td>Pretreatment of Sugarcane Bagasse – Ensiling and Hydrothermal Pretreatment</td>
</tr>
<tr>
<td>Beijaev, Peter</td>
<td>Continuous purification of protein</td>
</tr>
<tr>
<td>Benicsek, Jakub</td>
<td>Application of emulsion-forming enzymes for enhanced oil recovery</td>
</tr>
<tr>
<td>Bjerregaard, Rikke</td>
<td>Synthesis and Test of Alternative Diesel Oxidation Catalysts</td>
</tr>
<tr>
<td>Böttcher, Andreas Emil Ege</td>
<td>Preparation of High Capacitance PDMS Elastomers</td>
</tr>
<tr>
<td>Carasuso Vidella, Joan</td>
<td>Enzymatic biodiesel processing</td>
</tr>
<tr>
<td>Christensen, Steen Müller</td>
<td>Performance of combined diesel particulate filter and SCR</td>
</tr>
<tr>
<td>Colom, Juan-Manuel</td>
<td>Vanadium catalyzed oxidation of SO2 to SO3</td>
</tr>
</tbody>
</table>
Daugbjerg, Jesper Thorgils
New Production Methods for Intermediates used for the API Malitracene Hydrochloride

Flensborg, Julie Pauline
Sustainable process networks for carbon dioxide conversion

Fjellerup, Kasper
Rheological Properties of Pressure Sensitive Adhesives

Floc H, Tanguy Martin Benjamin
Development of a Laboratory model for the NH4 recovery process

Gjervell, Agnete
Modelling Investigation of Steady State and Transient Fixed Bed Operation in Hydroprocessing Reactors

Hansen, Morten
Phase Transition Analysis and Optimization of Natural Gas using Equation of States

Hansen, Tobias Anker
CPFD simulations of gas-solid in a non-reacting pilot-scale calciner

Hessel, Christian Evald
HC1 emissions from Cement Plants

Hofer, Andreas Torup
High Temperature Methane Steam Reforming Kinetics

Holm, Martin Soon Ho
Efficiency and Emission Optimization of Biomass CHP Gas Engines

Hønsel, Mikkel
Integration of an enzymatic reaction with NF to enhance separation between xylose and glucose

Ishay, Jonas
Aerosol Dynamics in Sulfuric Acid Condensers

Jensen, Morten Walk
Pilot Scale Experimental Studies and Simulation of Dynamic Mode CO2 Capture

Jørgensen, Mathias
Kinetic Model for the TIGAS process

Køhler, Pernille Staal
Simulation of rate-based distillation

Kolte, Alexander
High pressure behaviour of elastomeric plugs

Kourmpetis, Dimitrios
Model-based process optimization multivariable analysis

Kapellas, Apostolos
Enzymatic biomass hydrolysate processing

Kaptzopoulos, Konstantinos
Investigation of the Influence from Compounds in Inbicon Bioliquid on Fermentation

Mazlom, Naka Ali Akla
Continuous iso-butanol synthesis by Escherichia.coli JCL260

Meissner, Murray Peter
Waste-to-chemicals – Process Integration

Nielsen, Anders Damgaard
Promoting Pelleted and Mycelial Morphology in Filamentous Fermentation broth

Nielsen, Henrik Lund
Characterisation and valorisation of industrial lignin products

Novakova, Kristyna
Rate Based Model Development and Simulation of CO2 Absorption and Desorption Columns using Piperazine Promoted Potassium

Pedersen, Morten Nedergaard
Gasification of sewage sludge in a TwoStage gasifier

Pichler, Andreas
Methods for purification of fisetin

Prag, Christian Vilhelm
Model based monitoring of biochemical batch processes

Ravn, Kristian Viegaard
Alternative fuels burner

Rodrigues, Diogo
Measurement and modelling of mass transfer in the presence of substrate gradients

Sørensen, Mikael Refshammer
Production of Natural Methane Hydrate by CO2 Hydrate Swapping

Stummann, Magnus Zingler
Upscaling of a catalytic process for production of methyl lactate

Unnarsson, Unnur Margrét
Microbial Community Optimization for Electricity Generation in Microbial Fuel Cells

Vest, Mads Gothia
Pretreatment of hamp fibers for enzyme treatment

Vilby, Tobias
Desulphurization of FCC naphta with emphasis on the removal of thiols

Vilby, Tobias
Processing of Rare Earth Element ore: Thermodynamic Modeling and Simulation

Willeke, Maria Meldgaard
Computer-Aided Process Flowsheet Design

Yang, Jifeng
Production of natural gas from hydrates by swapping with CO2 and flue gas

Yue, Yingchao
Polymers for Skin Friendly Adhesives

Zingler, Magnus
Separation of Kanamycin B from Tobramycin by boronate Affinity Chromatography

Zingler, Magnus
Sustainable Process Design Through Process Intensification

Zingler, Magnus
Advanced Modeling of Bioreactors

Zingler, Magnus
Insulation coatings for steel structures
Our student organisation, KTStudents, represents all students in the courses at the department. Its goal is to improve the study environment for students through social and professional activities.

Company presentations
Companies within the chemical and biochemical areas are invited to present their daily work and challenges. The company presentations give the students a better understanding of their potential future jobs, an opportunity to network and thereby a way for the students to attain projects, internships or student jobs.

Company visits
The students are given the opportunity to visit companies within the chemical and biochemical fields. The tours around the production plants give the students insight into large-scale industry and the surrounding working environment.

Social events
Through social events, students get to socialize and network with other students. These activities especially strengthen the network between international and Danish students.

Liaison between the department and the students
In addition to providing knowledge about what a career in the chemical engineering industry entails, KTStudents also aims to help the academic development of chemical engineering students by acting as a liaison between the department and the students. We aim to expose students to research undertaken at DTU Chemical and Biochemical Engineering to generate awareness about the research centres and to facilitate a direction for BSc, MSc or PhD thesis topics.

GUESTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>TITLE</th>
<th>FROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ryoeichi Nakayma</td>
<td>PhD student</td>
<td>Nihon University, Japan</td>
</tr>
<tr>
<td>Maria Teresa Lopez-Arenas</td>
<td>Professor</td>
<td>University sao Carlos University, Brazil</td>
</tr>
<tr>
<td>Alfonso Mauricio Sales-Cruz</td>
<td>Professor</td>
<td>Universidad Autonoma Metropolitana Unidad Cuasimalpa, Mexico</td>
</tr>
<tr>
<td>Tobias Orlander</td>
<td>PhD student</td>
<td>Universidad Autonoma Metropolitana Unidad Cuasimalpa, Mexico</td>
</tr>
<tr>
<td>Fabio Battini</td>
<td>PhD student</td>
<td>Huazhong University of Science and Technology, China</td>
</tr>
<tr>
<td>Sun Hyung Kim</td>
<td>Postdoc</td>
<td>Pisa UNI, Italy</td>
</tr>
<tr>
<td>Ana Teresa de Melo</td>
<td>MSc student</td>
<td>Korea Uni - Korea</td>
</tr>
<tr>
<td>Machado Simoes Carvalho</td>
<td>MSc student</td>
<td>Universidade de Lisboa, Portugal</td>
</tr>
<tr>
<td>Mafalda Costa Artur Dias</td>
<td>MSc student</td>
<td>Universidade de Lisboa, Portugal</td>
</tr>
<tr>
<td>Estelle Sonia Roas Garanha</td>
<td>MSc student</td>
<td>TU - Munich, Germany</td>
</tr>
<tr>
<td>David Chaiko</td>
<td>MSc student</td>
<td>Sharif University, Iran</td>
</tr>
<tr>
<td>Elena Fritzler</td>
<td>MSc student</td>
<td>Universidad Autonoma Metropolitana-Cuajimalpa, Mexico</td>
</tr>
<tr>
<td>Moises Alberto Gonzalez-Contreras</td>
<td>MSc student</td>
<td>Universidad Autonoma Metropolitana-Cuajimalpa, Mexico</td>
</tr>
<tr>
<td>Omar Anaya-Reza</td>
<td>MSc student</td>
<td>Graz UNI, Austria</td>
</tr>
<tr>
<td>Pau Cabañeros Lopez</td>
<td>PhD student</td>
<td>Politecnico di Milano, Italy</td>
</tr>
<tr>
<td>Bianca Grabner</td>
<td>MSc student</td>
<td>Politecnico di Milano, Italy</td>
</tr>
<tr>
<td>Alberto Orsi</td>
<td>MSc student</td>
<td>Politecnico di Milano, Italy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>TITLE</th>
<th>FROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viviana Vichi</td>
<td>MSc student</td>
<td>Politecnico di Milano, Italy</td>
</tr>
<tr>
<td>Edouard Moine</td>
<td>MSc student</td>
<td>Politecnico di Milano, Italy</td>
</tr>
<tr>
<td>Shuai Yang</td>
<td>PhD student</td>
<td>University sao Carlos University, Brazil</td>
</tr>
<tr>
<td>Camille Marcarie</td>
<td>PhD student</td>
<td>University of Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Thomas Cognet</td>
<td>MSc student</td>
<td>ENSIACET, France</td>
</tr>
<tr>
<td>Stephane Hoerner</td>
<td>MSc student</td>
<td>ENSIACET, France</td>
</tr>
<tr>
<td>Circui Lyu</td>
<td>PhD student</td>
<td>Chineese Academy of Sciences, China</td>
</tr>
<tr>
<td>Xin Liao</td>
<td>PhD student</td>
<td>EPFL, Switzerland</td>
</tr>
<tr>
<td>Yujun Wang</td>
<td>Professor</td>
<td>Tsinghua University, China</td>
</tr>
<tr>
<td>Thanh Thien Nguyen</td>
<td>Professor</td>
<td>Tsinghua University, China</td>
</tr>
<tr>
<td>Salvador Ortega Requena</td>
<td>MSc student</td>
<td>Universidad Autonoma De Madrid, Spain</td>
</tr>
<tr>
<td>Weeranuit Prasertsi</td>
<td>MSc student</td>
<td>PPC Thailand</td>
</tr>
<tr>
<td>Kaesinee Petchkaekul</td>
<td>MSc student</td>
<td>PPC Thailand</td>
</tr>
<tr>
<td>Denghi Wang</td>
<td>PhD student</td>
<td>Xián Jiaotong Universitet, China</td>
</tr>
<tr>
<td>Yang Wang</td>
<td>PhD student</td>
<td>North China Electric Power</td>
</tr>
<tr>
<td>Angel Corcoles Garcia</td>
<td>PhD student</td>
<td>University of Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Xiaolong Li</td>
<td>PhD student</td>
<td>EPFL, Switzerland</td>
</tr>
<tr>
<td>Shi Huang</td>
<td>PhD student</td>
<td>Guest PhD - Institut Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sepuhk Nopember, Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Qingdao Institute, China</td>
</tr>
</tbody>
</table>

< From the left: Kasper Israelsen, Kasper L. Berendt, Dorothee L. Kurz, Joachim Thrane, and Jorge A. Sevilla Moreno (missing from the picture are Casper Lundquist and Andreea Toderascu)
DTU Chemical Engineering strives for excellence in research. That includes recruiting excellent researchers – one of them is Professor Rafiqul Gani for whom 2015 started out well, as he was appointed Doctor Honoris Causa at the University of Pannonia. Then, on 9 March, Gani was invited to give a lecture at the science symposium organized by BASF as part of their 150-year anniversary celebrations, and on 1 April he gave an invited lecture at the Sinopec Engineering Incorporation (SEI) in Beijing. He was then re-elected as President of the European Federation of Chemical Engineering on 25 October, and on 6 November he received his third Doctor Honoris Causa degree, this time from the University of Babeș-Bolyai. He concluded 2015 by receiving the AIChE Computing in Chemical Engineering Award on 10 November. © BASF SE.
Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.; Prentice, Colin; Wang, Han; Baig, Sofia; Eamus, Derek; Resco de Dios, Victor; Mitchell, Patrick; Ellsworth, David S.; Mikkelsen, Teis Nargaard / Optimal stomatal behaviour around the world. Nature Climate Change, Vol. 5, No. 5, 2015, p. 459-464.

Liu, Ming; Fernando, Dinesh; Daniel, Geoffrey; Madsen, Bo; Meyer, Anne S.; Ale, Marcel Tutor; Thygesen, Anders / Effect of harvest time and field retting duration on the chemical composition, morphology and mechanical properties of hemp fibers. Industrial Crops and Products, Vol. 69, 2015, p. 29-39.

Liu, Ming; Fernando, Dinesh; Meyer, Anne S.; Madsen, Bo; Daniel, Geoffrey; Thygesen, Anders / Characterization and biological decellulization of hemp fibers originating from different stem sections. Industrial Crops and Products, Vol. 76, 2015, p. 880-891.

Ma, Baoguang; Hansen, Jens Henrik; Hvilsted, Søren; Skov, Anne Ladegaard / Investigation into Accessible Surface Vinyl Concentrations of Nonstoichiometric PDMS Microspheres from Hydrolysis Reactions and Their Further Crosslinking Reactions. Macromolecular Materials & Engineering, Vol. 300, No. 6, 2015, p. 627-636.

Ma, Baoguang; Hansen, Jens Henrik; Hvilsted, Søren; Skov, Anne Ladegaard / Polydimethylsiloxane microspheres with poly(methyl methacrylate) coating: Modelling, preparation, characterization. Canadian Journal of Chemical Engineering, Vol. 93, No. 10, 2015, p. 1744-1752.

Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede; Hvilsted, Søren; Skov, Anne Ladegaard / A new soft dielectric silicone elastomer matrix with high mechanical integrity and low losses. RSC Advances, Vol. 5, No. 14, 2015, p. 10254-10259.

Maribo-Mogens, Bjørn; Thomsen, Kaj; Kontogeorgis, Georgios M. / An electrolyte CPA equation of state for mixed solvent electrolytes. AIChE Journal, Vol. 61, No. 9, 2015, p. 2933-2950.

Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine; Gernaey, Krist; Smets, Barth F.; Sin, Gürkan / A novel control strategy for single-stage autotrophic nitrogen removal in SBR. Chemical Engineering Journal, Vol. 260, 2015, p. 64-73.

Mazurek, Piotr Stanislaw; Daugaard, Anders Egede; Skolimowski, Maciej; Hvilsted, Søren; Skov, Anne Ladegaard / Preparing mono-dispersed liquid core PDMS microcapsules from thiol-ene-epoxy-tailored flow-focusing microfluidic devices. RSC Advances, Vol. 5, No. 5, 2015, p. 15379-15386.

Mikkelsen, Bolette Lind; Bagger Jørgensen, Rikke; Lyngkjær, Michael Foged / Complex interplay of future climate levels of CO2, ozone and temperature on susceptibility to fungal diseases in barley. Plant Pathology, Vol. 64, No. 2, 2015, p. 319-327.

Mohanty, Soumyaranjan; Larsen, Layla Bashir; Trifol Guzman, Jon; Szabo, Peter; Burri, Harsha Varthan Reddy; Canali, Chiara; Dufva, Martin; Emméus, Jenny; Wolff, Anders / Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. Materials Science and Engineering C: Materials for Biological Applications, Vol. 55, 2015, p. 569-578.

Partavan, Asrin; Mikkelsen, Teis Nørgaard; Vestergaard, Mette / Plants increase laccase activity in soil with long-term elevated CO2 legacy. European Journal of Soil Biology, Vol. 70, 2015, p. 97-103.

Pelucchi, Matteo; Frassoldati, Alessio; Faravelli, Tiziano; Ruscic, Branko; Garborg, Peter / High-temperature chemistry of HCl and Cl2. Combustion and Flame, Vol. 162, No. 6, 2015, p. 2693-2704.

Privata, Romain; Viscontea, Maxime; Zazoua-Khames, Anis; Jauberta, Jean-Noël; Gani, Rafiqul / Analysis and prediction of the alpha-function parameters used in cubic equations of state. Chemical Engineering Science, Vol. 126, 2015, p. 584-603.

Putluru, Siva Sankar Reddy; Schill, Leonhard; Jensen, Anker Degn; Siret, Bernard; Tabaries, Frank; Fehrmann, Rasmus / Mn/TiO2 and Mn/Fe/TiO2 catalysts synthesized by deposition precipitation—promising for selective catalytic reduction of NO with NH3, at low temperatures. Applied Catalysis B: Environmental, Vol. 165, 2015, p. 628-635.

Quaglia, Alberto; Gargalo, Carina L.; Chairakwongsa, Siwanat; Sin, Gürkan; Gani, Rafiqul / Systematic network synthesis and design: Problem formulation, superstructure generation, data management and solution. Computers and Chemical Engineering, Vol. 72, 2015, p. 68-86.

Rasmussen, Dominik Bjørn; Christensen, Jakob Munkholt; Temel, Burcin; Studt, Felix; Moses, Pou; Georg; Rossmeisl, Jan; Riisager, Anders; Jensen, Anker Degn / Ketene as a Reaction Intermediate in the Carboxylation of Dimethyl Ether to Methyl Acetate over Mordenite. Angewandte Chemie, Vol. 127, No. 25, 2015, p. 7369-7372.

Rasmussen, Dominik Bjørn; Christensen, Jakob Munkholt; Temel, Burcin; Studt, Felix; Moses, Pou; Georg; Rossmeisl, Jan; Riisager, Anders; Jensen, Anker Degn / Ketene as a Reaction Intermediate in the Carboxylation of Dimethyl Ether to Methyl Acetate over Mordenite. Angewandte Chemie International Edition, Vol. 54, No. 25, 2015, p. 7261-7264.

Ravn, Helle Christine; Sørensen, Ole Bøndsholm; Meyer, Anne S. / Time of harvest affects the yield of soluble polysaccharides extracted enzymatically from potato pulp. Food and Bioproducts Processing, Vol. 93, 2015, p. 77-83.

Rån, Troels; Jakubshvili, Irakli; Hvilstved, Søren; Jankova, Katja; Lee, Seungwhan / Ultralow Friction with Hydrophilic Polymer Brushes in Water as Segregated from Silicone Matrix. Advanced Materials Interfaces, 2015.

Sadegh, Negar; Thomsen, Kaj; Solbraa, Even; Johannessen, Eivind; Rudolfsen, Gunn Iren; Berg, Ole Johan / Solubility of hydrogen sulfide in aqueous solutions of N-methylidethanolamine at high pressures. Fluid Phase Equilibria, Vol. 393, 2015, p. 33-39.

Santos, Leticia Cotia dos; Tavares, Frederico Wanderley; Ahón, Victor Rolando Ruiz; Kontogeorgis, Georgios / Modeling MEA with the CPA equation of state: A parameter estimation study adding local search to PSO algorithm. Fluid Phase Equilibria, Vol. 400, 2015, p. 76-86.

Schill, Leonhard; Putturu, Siva Sankar Reddy; Jensen, Anker Degn; Fehrmann, Rasmus / MnFe/Al₂O₃ Catalyst Synthesized by Deposition Precipitation for Low-Temperature Selective Catalytic Reduction of NO with NH₃. Catalysis Letters, Vol. 145, No. 9, 2015, p. 1724-1732.

Senemov, Konstantin N.; Regueira Muñiz, Teresa; Fernández, Josefa; Charykov, Nikolay A.; Murin, Igor V. / Pressure dependence of the solubility of light fullerenes in 1-hexanol from 298.15 K to 363.15 K. Journal of Molecular Liquids, Vol. 209, 2015, p. 71-76.

Simon, Levente L.; Pataki, Hajnalka; Marosi, György; Meemken, Fabian; Hungerbühler, Konrad; Baiker, Alfons; Tummala, Srinivas; Glennon, Brian; Kuentz, Martin; Steele, Gerry; Kramer, Herman J. M.; Rydzak, James W.; Chen, Zengping; Morris, Julian; Kjell, Francois; Singh, Ravendra; Gani, Rafiqul; Gernaey, Krist V.; Louhi-Kultanen, Marjatta; Oreilly, John; Sandler, Niklas; Antikainen, Osmo; Yliruusi, Jouko; Froehberg, Patrick; Ulrich, Joachim; Braatz, Richard D.; Leyssens, Tom; Von Stosch, Moritz; Oliveira, Rui; Tan, Reginald B. H.; Wu, Huiquan; Khan, Mansoor; Ogrady, Des; Pandey, Anjan; Westra, Remko; Delle-Case, Emmanuel; Pape, Detlef; Angelosanto, Daniele; Maret, Yannick; Steiger, Skov, Anne Ladegaard / Materials science: Like cartilage, but simpler. Nature, Vol. 517, No. 7532, 2015, p. 25-26.

Solon, Kimberly; Flores Alcina, Xavier; Mbamba, Christian Kazadi; Volcke, Eveline I.P.; Tait, Stephan; Batstone, Damien; Gernaey, Krist; Jeppsson, Ulf / Effects of ionic strength and ion pairing on (plant-wide) modeling of anaerobic digestion. Water Research, Vol. 70, 2015, p. 235-245.

Song, Wen; Liu, Zhiting; Liu, Liping; Skov, Anne Ladegaard; Song, Nan; Xiong, Guang; Zhu, Kake; Zhou, Xinggui / A solvent evaporation route towards fabrication of hierarchically porous ZSM-11 with highly accessible mesopes. RSC Advances, Vol. 5, No. 39, 2015, p. 31195-31204.

Sun, Guotao; Thygesen, Anders; Meyer, Anne S. / Acetate is a superior substrate for microbial fuel cell initiation preceding bioethanol effluent utilization. Applied Microbiology and Biotechnology, Vol. 99, No. 11, 2015, p. 4905-4915.

Tang, Xuguang; Li, Hengpeng; Desai, Ankur R.; Nagy, Zoltan; Luo, Juhua; Kolb, Thomas E.; Olioso, Albert; Xu, Xibao; Yao, Li; Kutsch, Werner; Pilgaard, Kim; Koestner, Barbara; Ammann, Christoph / How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth? Scientific Reports, Vol. 4, 2015.
Thomsen, Tobias Pape; Ravenni, Giulia; Holm, Jens Kai; Ahrenfeldt, Jesper; Hauggaard-Nielsen, Henrik; Henriksen, Ulrik Birk / Screening of various low-grade biomass materials for low temperature gasification: Method development and application. Biomass and Bioenergy, Vol. 79, 2015, p. 128-144.

Tufvesson, Pär; Nordblad, Mathias; Krühne, Ulrich; Schürrmann, Martin; Vogel, Andreas; Wohlgenuth, Roland; Woodley, John / Economic Considerations for Selecting an Amine Donor in Biocatalytic Transamination. Organic Process Research and Development, Vol. 19, No. 6, 2015, p. 652-660.

Villumsen, Nanna Stengaard; Jensen, Hanne Bak; Thu Le, Thao Thi; Møller, Hanne Søndergaard; Nordvang, Rune Thorbjørn; Nielsen, Line Ravn; Nielsen, Søren Bang; Sørensen, John; Hammershøj, Marianne; Larsen, Lotte Bach / Self-assembly of caseinomacro-peptide as a potential key mechanism in the formation of visible storage induced aggregates in acidic whey protein isolate dispersions. International Dairy Journal, Vol. 49, 2015, p. 8-15.

Wagner, Dorottya Sarolta; Ramin, Elham; Szabo, Peter; Dechesne, Arnaud; Plösz, Benedek G. / Microthrix parvicella abundance associates with activated sludge settling velocity and rheology - Quantifying and modelling filamentous bulking. Water Research, Vol. 78, 2015, p. 121-132.

Wright, Christina; Østergård, Hanne / Scales of renewability exemplified by a case study of three Danish pig production systems. Ecological Modelling, Vol. 315, 2015, p. 28-36.

Zaharia, Anamaria; Sarbu, Andreei; Radu, Anita-Laura; Jankova Atanasova, Katja; Daugaard, Anders Egede; Hvilsted, Søren; Perrin, François-Xavier; Teodorescu, Mircea; Munteanu, Cornel; Fruth-Oprisan, Victor / Preparation and characterization of poly(acrylamide-modified kaolinite containing poly[acrylic acid-co-methylene bisacrylamide]) nanocomposite hydrogels. Applied Clay Science, Vol. 103, 2015, p. 46-54.

Zakaria, Shamsul Bin; Morshuis, Peter H. F.; Yahia, Benslimane Mohamed; Yu, Liyun; Skov, Anne Ladegaard / The electrical breakdown strength of pre-stretched elastomers, with and without sample volume conservation. Smart Materials and Structures, Vol. 24, No. 5, 055009, 2015.

Zakaria, Shamsul Bin; Yu, Liyun; Kofod, Guggi; Skov, Anne Ladegaard / The influence of static pre-stretching on the mechanical ageing of filled silicone rubbers for dielectric elastomer applications. Materials Today Communications, Vol. 4, 2015, p. 204-213.

Contributions to books

PhD Theses

Bozkurt, Hande / Computer-aided Framework for Synthesis, Design and Retrofit of Wastewater Treatment Plants

Cheali, Peam / Synthesis and design of optimal biorefinery

Cunico, Larissa / Modelling of phase equilibria and related properties of mixtures involving lipids

Fedorova, Marina / Systematic Methods and Tools for Computer Aided Modelling

Frost, Michael Grynnerup / Measurement and Modelling of Phase Equilibrium of Oil - Water - Polar Chemicals

Grosch, Helge / Optical Absorption Spectroscopy for Gas Analysis in Biomass Gasification

Halim, Amalia / Application of Microorganisms for Enhanced Oil Recovery

Hashemi, Hamid / Combustion Characteristics of Bio-derived Fuels and Additives

Hassounah, Suzan Sager / Optimization of large-scale fabrication of dielectric elastomer transducers

Heintz, Søren / Application of microfluidics for the development of intensified aminotransferase (ATA) processes

Lindholdt, Asger / Fuel efficiency and fouling control coatings in maritime transport

Lundemo, Marie Therese / Bioprocess Engineering for the Application of P450s

Meisler, Kresten T / Multi-dimensional population balance models of crystallization processes

Mollerup, Ane L / A methodological approach to designing sewer system control

Nielsen, Anne Veller / Mineral bioavailability enhancement by in situ gastrointestinal enzyme catalysis

Olsen, Brian Kjærgaard / Deactivation of SCR catalysts in biomass fired power plants

Pereira Rosinha, Ines / Shape and topology optimization of enzymatic microreactors

Perfeldt, Christine Malmos / Inhibition of Gas Hydrate Formation by Antifreeze Proteins

Rasmussen, Dominik Bjørn / Selective and efficient synthesis of ethanol from dimethyl ether and syngas

Ringborg, Rolf Hoffmeyer / Application of a Microfluidic Tool for the Determination of Enzyme Kinetics

Snip, Laura / Upgrading the Benchmark Simulation Model Framework with emerging challenges - A study of N2O emissions and the fate of pharmaceuticals in urban wastewater systems

Stolberg-Rohr, Thomine / Nox Monitoring in Humid Exhaust Gas Using Non-Dispersive Infrared Spectroscopy

Sun, Guotao / Establishment of Microbial Fuel Cells (MFCs) for Production of Electricity from Bioethanol effluent

For an updated overview of our publications go to our website www.kt.dtu.dk

Industrial PhD’s

Peter Sams Hammershøj / Haldor Topsøe

Morten s. Jepsen / Valund

Pernille von Freiesleben / NovoZymes

Jakob Dragsbæk / Haldor Topsøe

Albert C. Noquer Hempel / Hempel

Kasper Linde / Haldor Topsøe

Brian Pierce / Dupont

Thomas Petersen / GEA Process Engineering
USEFUL INFORMATION

Photo: PhD students between towers of Graduate Schools Yearbooks
Anders Nørregaard, Parto Ludovica Hengeller and Soheila Ghafraneja pose among the many Graduate Schools Yearbooks in which their current work is represented. The Graduate Schools Yearbook contains abstracts from current PhD projects at DTU Chemical Engineering. The book is free of charge and can be downloaded at www.kt.dtu.dk or ordered in print by sending an e-mail to: informationen@kt.dtu.dk.
Annual Report 2015
January 2016

Department of Chemical and Biochemical Engineering
Technical University of Denmark
DK 2800 Kgs. Lyngby, Denmark
www.kt.dtu.dk

Editor in chief
Professor Kim Dam-Johansen, Head of Department

Editing, project management & articles
Lotte Grandorf, Communications Officer

Articles
‘New mathematical models will help clean and recycle your water’ & ‘Membranes pave the way for a brighter bio-future’
Rasmus H. Ravn

Photos
Christian Ove Carlsson, unless stated otherwise

Design & production
GraphicCo

Print
GraphicCo