Thermodynamics and Transport of Gases in Polymer Liners for Subsea Applications

Susana Almeida1, Luis Martos1, Jordi Costa1, Rasmus Lundsgaard1, Georgios Kontogeorgis1, Jacob Sonne2, Christian Wang2, Adam Rubin2, Nicolas von Solms1**

1Center for Energy Resources Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark
2 NOV Flexibles, Priorparken 480, 2605 Brøndby, Denmark

(*) Pres. author: susal@kt.dtu.dk
(**) Corresp. author: nvs@kt.dtu.dk

Introduction

• Flexible Pipelines:
 – better alternative to the rigid pipes – more economical solution;
 – concentric layers of polymeric and steel materials.

• Transport of CO₂ to [1]:
 – Injection into oil reservoirs for EOR;
 – Injection into coal reserves to extract CH₄;
 – As CCS method.

Experimental

• Solubility Set-up

• Permeability Set-up

Results

• Solubility

• Permeability

Conclusions

Solubility
• Temperature influence: Arrhenius temperature dependency;
• Pressure influence: increases with increasing pressure;

Permeability
• Temperature influence: Arrhenius temperature dependency;
• Pressure influence: PVDF and PA11: increases with increasing pressure
 - XLPE: decreases with increasing pressure
• CH₄ influence: decreases with CH₄ presence

Acknowledgements
The authors would like to acknowledge the financial support of NOV (National Oilwell Varco).

Figure 1 – Experimental results for solubility of CO₂ in (a) PVDF and (b) XLPE at 45 °C and 90 °C. The dots represent the experimental data and the lines represent the model prediction using sPC-SAFT equation of state.

Figure 2 – Experimental results for permeability of 100 % CO₂ in (a) PVDF, (b) XLPE and (c) PA11 at 45, 60, 75 and 90 °C.

Figure 3 – Experimental results for permeability of 90% CO₂ + 10% CH₄ in (a) PVDF and (b) XLPE at 45, 60, 75, 90, 110 and 130 °C.