Creating a predictive model for stone wool dissolution


The goal of WOODI is to develop a predictive model for the dissolution rate of mineral wool fibres as a function of fibre and solution composition. Of particular interest is pH promoted dissolution (product stability) and organic acid promoted dissolution (biosolubility).


Stone wool products such as insulation, can dissolve partially or fully when in contact with a solution. For loose fibres inhaled during construction, dissolution in the lungs is desired (biosolubility) and is key in the safety profile of the product. For applications where stone wool e.g. is in direct contact with the ground, resistance to dissolution is directly related to product stability. A fundamental understanding of the dissolution process can help future product design.

The project

The dissolution will be modelled using a microkinetic model, which in turn will be based on molecular scale properties of the fibre surfaces. The required proerties include surface chemistry as a function of pH and solution additives as well as the dissolution barriers for the various components of the material. We will be using a combination of computational chemistry and key experiments to build the model.

The project is funded by ROCKWOOL A/S


Martin Andersson
Associate Professor
DTU Chemical Engineering
+45 45 25 29 57